# the ex-Gaussian distribution
# Mikis Stasinopoulos and Bob Rigby (suggested by Jonathan Williams)
# 28_11_07
exGAUS <- function (mu.link="identity", sigma.link="log", nu.link ="log")
{
mstats <- checklink("mu.link", "ex-Gaussian", substitute(mu.link),
c("inverse", "log", "identity", "own"))
dstats <- checklink("sigma.link", "ex-Gaussian", substitute(sigma.link), #
c("inverse", "log", "identity", "own"))
vstats <- checklink("nu.link", "ex-Gaussian",substitute(nu.link),
c("logshifted", "log", "identity", "own"))
structure(
list(family = c("exGAUS", "ex-Gaussian"),
parameters = list(mu=TRUE, sigma=TRUE, nu=TRUE),
nopar = 3,
type = "Continuous",
mu.link = as.character(substitute(mu.link)),
sigma.link = as.character(substitute(sigma.link)),
nu.link = as.character(substitute(nu.link)),
mu.linkfun = mstats$linkfun,
sigma.linkfun = dstats$linkfun,
nu.linkfun = vstats$linkfun,
mu.linkinv = mstats$linkinv,
sigma.linkinv = dstats$linkinv,
nu.linkinv = vstats$linkinv,
mu.dr = mstats$mu.eta,
sigma.dr = dstats$mu.eta,
nu.dr = vstats$mu.eta,
dldm = function(y,mu,sigma,nu) {
z <- y-mu-((sigma^2)/nu)
pphi <- (dnorm(z/sigma)/(pnorm(z/sigma)))
dldm <- 1/nu-(1/sigma)*pphi
dldm
},
d2ldm2 = function(y,mu,sigma,nu) {
z <- y-mu-((sigma^2)/nu)
pphi <- (dnorm(z/sigma)/(pnorm(z/sigma)))
dldm <- 1/nu-(1/sigma)*pphi
d2ldm2 <- -dldm*dldm
d2ldm2 <- ifelse(d2ldm2 < -1e-15, d2ldm2,-1e-15)
d2ldm2
},
dldd = function(y,mu,sigma,nu) {
z <- y-mu-((sigma^2)/nu)
pphi <- (dnorm(z/sigma)/(pnorm(z/sigma)))
dldd <- (sigma/(nu^2))-((z/sigma^2)+(2/nu))*pphi
dldd
},
d2ldd2 = function(y,mu,sigma,nu) {
z <- y-mu-((sigma^2)/nu)
pphi <- (dnorm(z/sigma)/(pnorm(z/sigma)))
dldd <- (sigma/(nu^2))-((z/sigma^2)+(2/nu))*pphi
d2ldd2 <- -dldd*dldd
d2ldd2 <- ifelse(d2ldd2 < -1e-10, d2ldd2,-1e-10)
d2ldd2
},
dldv = function(y,mu,sigma,nu) {
z <- y-mu-((sigma^2)/nu)
pphi <- (dnorm(z/sigma)/(pnorm(z/sigma)))
dldv <- -(1/nu)+(z/nu^2)+(sigma/nu^2)*pphi
dldv
},
d2ldv2 = function(y,mu,sigma,nu) {
z <- y-mu-((sigma^2)/nu)
pphi <- (dnorm(z/sigma)/(pnorm(z/sigma)))
dldv <- -(1/nu)+(z/nu^2)+(sigma/nu^2)*pphi
d2ldv2 <- -dldv*dldv
d2ldv2 <- ifelse(d2ldv2 < -1e-15, d2ldv2,-1e-15)
d2ldv2
},
d2ldmdd = function(y,mu,sigma,nu) {
z <- y-mu-((sigma^2)/nu)
pphi <- (dnorm(z/sigma)/(pnorm(z/sigma)))
dldm <- 1/nu-(1/sigma)*pphi
dldd <- (sigma/(nu^2))-((z/sigma^2)+(2/nu))*pphi
d2ldmdd <- -dldm *dldd
d2ldmdd },
d2ldmdv = function(y,mu,sigma,nu) {
z <- y-mu-((sigma^2)/nu)
pphi <- (dnorm(z/sigma)/(pnorm(z/sigma)))
dldm <- 1/nu-(1/sigma)*pphi
dldv <- -(1/nu)+(z/nu^2)+(sigma/nu^2)*pphi
d2ldmdv <- -dldm *dldv
d2ldmdv
},
d2ldddv = function(y,mu,sigma,nu) {
z <- y-mu-((sigma^2)/nu)
pphi <- (dnorm(z/sigma)/(pnorm(z/sigma)))
dldd <- (sigma/(nu^2))-((z/sigma^2)+(2/nu))*pphi
dldv <- -(1/nu)+(z/nu^2)+(sigma/nu^2)*pphi
d2ldddv <- -dldd *dldv
d2ldddv
},
G.dev.incr = function(y,mu,sigma,nu,...) {
-2*dexGAUS(y,mu=mu,sigma=sigma,nu=nu,log=TRUE)
},
rqres = expression(rqres(pfun="pexGAUS", type="Continuous", y=y, mu=mu, sigma=sigma, nu=nu)),
mu.initial = expression( mu <- (y+mean(y))/2),
sigma.initial = expression( sigma <- rep(sd(y)/2,length(y))),
nu.initial = expression( nu <- rep(max(2*(mean(y)-median(y)),0.1), length(y))), # 2*max((mean(y)-median(y),0.1) # (mean(y)+sd(y))/4
mu.valid = function(mu) TRUE ,
sigma.valid = function(sigma) all(sigma > 0),
nu.valid = function(nu) all(nu > 0),
y.valid = function(y) TRUE,
mean = function(mu, sigma, nu) mu + nu,
variance = function(mu, sigma, nu) sigma^2 + nu^2
),
class = c("gamlss.family","family"))
}
#----------------------------------------------------------------------------------------
dexGAUS<-function(x, mu=5, sigma=1, nu=1, log=FALSE)
{
if (any(sigma <= 0) ) stop(paste("sigma must be greater than 0 ", "\n", ""))
if (any(nu <= 0) ) stop(paste("nu must be greater than 0 ", "\n", ""))
ly <- length(x)
sigma <- rep(sigma, length = ly)
mu <- rep(mu, length = ly)
nu <- rep(nu, length = ly)
z <- x-mu-((sigma^2)/nu)
logfy <- ifelse(nu>0.05*sigma,
-log(nu)-(z+(sigma^2/(2*nu)))/nu+log(pnorm(z/sigma)),
dnorm(x, mean=mu, sd=sigma, log=TRUE)
)
#logfy <- ifelse(nu > 0.05, logfy, dnorm(x,mean=mu,sd=sigma, log=TRUE))
#logfy <- -log(nu)+((mu-x)/nu)+(sigma^2/(2*nu^2))+log(pnorm(((x-mu)/sigma)-sigma/nu))
if(log==FALSE) fy <- exp(logfy) else fy <- logfy
fy
}
#----------------------------------------------------------------------------------------
pexGAUS<-function(q, mu = 5, sigma = 1, nu=1, lower.tail = TRUE, log.p = FALSE)
{
if (any(sigma <= 0) ) stop(paste("sigma must be greater than 0 ", "\n", ""))
if (any(nu <= 0) ) stop(paste("nu must be greater than 0 ", "\n", ""))
ly <- length(q)
sigma <- rep(sigma, length = ly)
mu <- rep(mu, length = ly)
nu <- rep(nu, length = ly)
index <- seq(along=q)
z <- q-mu-((sigma^2)/nu)
cdf <- ifelse(nu>0.05*sigma,
pnorm((q-mu)/sigma)-pnorm(z/sigma)*exp(((mu+(sigma^2/nu))^2-(mu^2)-2*q*((sigma^2)/nu))/(2*sigma^2)),
pnorm(q, mean=mu, sd=sigma)
)
if(lower.tail==TRUE) cdf <- cdf else cdf <- 1-cdf
if(log.p==FALSE) cdf <- cdf else cdf <- log(cdf)
cdf
}
#----------------------------------------------------------------------------------------
qexGAUS <- function(p, mu = 5, sigma = 1, nu = 1, lower.tail = TRUE, log.p = FALSE)
{
#---functions--------------------------------------------
h1 <- function(q)
{
pexGAUS(q , mu = mu[i], sigma = sigma[i], nu = nu[i]) - p[i] #???????????????
}
h <- function(q)
{
pexGAUS(q , mu = mu[i], sigma = sigma[i], nu = nu[i]) #???????????????????
}
#-----------------------------------------------------------------
if (any(sigma <= 0)) stop(paste("sigma must be positive", "\n", ""))
if (any(nu <= 0)) stop(paste("nu must be positive", "\n", ""))
if (log.p==TRUE) p <- exp(p) else p <- p
if (lower.tail==TRUE) p <- p else p <- 1-p
if (any(p < 0)|any(p > 1)) stop(paste("p must be between 0 and 1", "\n", ""))
lp <- max(length(p),length(mu),length(sigma),length(nu))
p <- rep(p, length = lp)
sigma <- rep(sigma, length = lp)
mu <- rep(mu, length = lp)
nu <- rep(nu, length = lp)
q <- rep(0,lp)
for (i in seq(along=p))
{
if (h(mu[i])<p[i])
{
interval <- c(mu[i], mu[i]+sigma[i])
j <-2
while (h(interval[2]) < p[i])
{interval[2]<- mu[i]+j*sigma[i]
j<-j+1
}
}
else
{
interval <- c(mu[i]-sigma[i], mu[i])
j <-2
while (h(interval[1]) > p[i])
{interval[1]<- mu[i]-j*sigma[i]
j<-j+1
}
}
q[i] <- uniroot(h1, interval)$root
#interval <- c(.Machine$double.xmin, 20)
}
q
}
#----------------------------------------------------------------------------------------
rexGAUS <- function(n, mu=5, sigma=1, nu=1, ...)
{
if (any(sigma <= 0)) stop(paste("sigma must be positive", "\n", ""))
if (any(nu <= 0)) stop(paste("nu must be positive", "\n", ""))
if (any(n <= 0)) stop(paste("n must be a positive integer", "\n", ""))
n <- ceiling(n)
p <- runif(n)
r <- qexGAUS(p,mu=mu,sigma=sigma, nu=nu, ...)
r
}
#----------------------------------------------------------------------------------------
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.