R/runSoupX.R

Defines functions plotSoupXResults .SoupXOneBatch runSoupX

Documented in plotSoupXResults runSoupX

#' @title Detecting and correct contamination with SoupX
#' @description A wrapper function for \link[SoupX]{autoEstCont} and
#' \link[SoupX]{adjustCounts}. Identify potential contamination from
#' experimental factors such as ambient RNA. Visit
#' \href{https://rawcdn.githack.com/constantAmateur/SoupX/204b602418df12e9fdb4b68775a8b486c6504fe4/inst/doc/pbmcTutorial.html}{their vignette}
#' for better understanding.
#' @param inSCE A \linkS4class{SingleCellExperiment} object.
#' @param sample A single character specifying a name that can be found in
#' \code{colData(inSCE)} to directly use the cell annotation; or a character
#' vector with as many elements as cells to indicates which sample each cell
#' belongs to. SoupX will be run on cells from each sample separately. Default
#' \code{NULL}.
#' @param useAssay A single character string specifying which assay in
#' \code{inSCE} to use. Default \code{'counts'}.
#' @param background A numeric matrix of counts or a
#' \linkS4class{SingleCellExperiment} object with the matrix in \code{assay}
#' slot. It should have the same structure as \code{inSCE} except it contains
#' the matrix including empty droplets. Default \code{NULL}.
#' @param bgAssayName A single character string specifying which assay in
#' \code{background} to use when \code{background} is a
#' \linkS4class{SingleCellExperiment} object. If \code{NULL}, the function
#' will use the same value as \code{useAssay}. Default \code{NULL}.
#' @param bgBatch The same thing as \code{sample} but for \code{background}. Can
#' be a single character only when \code{background} is a
#' \linkS4class{SingleCellExperiment} object. Default \code{NULL}.
#' @param assayName A single character string of the output corrected matrix.
#' Default \code{"SoupX"} when not using a background, otherwise,
#' \code{"SoupX_bg"}.
#' @param cluster Prior knowledge of clustering labels on cells. A single
#' character string for specifying clustering label stored in
#' \code{colData(inSCE)}, or a character vector with as many elements as cells.
#' When not supplied, \code{\link[scran]{quickCluster}} method will be applied.
#' @param reducedDimName A single character string of the prefix of output
#' corrected embedding matrix for each sample. Default \code{"SoupX_UMAP_"} when
#' not using a background, otherwise, \code{"SoupX_bg_UMAP_"}.
#' @param tfidfMin Numeric. Minimum value of tfidf to accept for a marker gene.
#' Default \code{1}. See \code{?SoupX::autoEstCont}.
#' @param soupQuantile Numeric. Only use genes that are at or above this
#' expression quantile in the soup. This prevents inaccurate estimates due to
#' using genes with poorly constrained contribution to the background. Default
#' \code{0.9}. See \code{?SoupX::autoEstCont}.
#' @param maxMarkers Integer. If we have heaps of good markers, keep only the
#' best maxMarkers of them. Default \code{100}. See \code{?SoupX::autoEstCont}.
#' @param contaminationRange Numeric vector of two elements. This constrains
#' the contamination fraction to lie within this range. Must be between 0 and 1.
#' The high end of this range is passed to
#' \code{\link[SoupX]{estimateNonExpressingCells}} as
#' \code{maximumContamination}. Default \code{c(0.01, 0.8)}. See
#' \code{?SoupX::autoEstCont}.
#' @param rhoMaxFDR Numeric. False discovery rate passed to
#' \code{\link[SoupX]{estimateNonExpressingCells}}, to test if rho is less than
#' \code{maximumContamination}. Default \code{0.2}. See
#' \code{?SoupX::autoEstCont}.
#' @param priorRho Numeric. Mode of gamma distribution prior on contamination
#' fraction. Default \code{0.05}. See \code{?SoupX::autoEstCont}.
#' @param priorRhoStdDev Numeric. Standard deviation of gamma distribution prior
#' on contamination fraction. Default \code{0.1}. See
#' \code{?SoupX::autoEstCont}.
#' @param forceAccept Logical. Should we allow very high contamination fractions
#' to be used. Passed to \code{\link[SoupX]{setContaminationFraction}}. Default
#' \code{FALSE}. See \code{?SoupX::autoEstCont}.
#' @param adjustMethod Character. Method to use for correction. One of
#' \code{'subtraction'}, \code{'soupOnly'}, or \code{'multinomial'}. Default
#' \code{'subtraction'}. See \code{?SoupX::adjustCounts}.
#' @param roundToInt Logical. Should the resulting matrix be rounded to
#' integers? Default \code{FALSE}. See \code{?SoupX::adjustCounts}.
#' @param tol Numeric. Allowed deviation from expected number of soup counts.
#' Don't change this. Default \code{0.001}. See \code{?SoupX::adjustCounts}.
#' @param pCut Numeric. The p-value cut-off used when
#' \code{method = 'soupOnly'}. Default \code{0.01}. See
#' \code{?SoupX::adjustCounts}.
#' @return The input \code{inSCE} object with \code{soupX_nUMIs},
#' \code{soupX_clustrers}, \code{soupX_contamination} appended to \code{colData}
#' slot; \code{soupX_{sample}_est} and \code{soupX_{sample}_counts} for each
#' sample appended to \code{rowData} slot; and other computational metrics at
#' \code{getSoupX(inSCE)}. Replace "soupX" to "soupX_bg" when \code{background}
#' is used.
#' @seealso plotSoupXResults
#' @export
#' @author Yichen Wang
#' @examples
#' \dontrun{
#' # SoupX does not work for toy example,
#' sce <- importExampleData("pbmc3k")
#' sce <- runSoupX(sce, sample = "sample")
#' plotSoupXResults(sce, sample = "sample")
#' }
runSoupX <- function(inSCE,
                     sample = NULL,
                     useAssay = "counts",
                     background = NULL,
                     bgAssayName = NULL,
                     bgBatch = NULL,
                     assayName = ifelse(is.null(background),
                                        "SoupX", "SoupX_bg"),
                     cluster = NULL,
                     reducedDimName = ifelse(is.null(background),
                                        "SoupX_UMAP_", "SoupX_bg_UMAP_"),
                     tfidfMin = 1,
                     soupQuantile = 0.9,
                     maxMarkers = 100,
                     contaminationRange = c(0.01, 0.8),
                     rhoMaxFDR = 0.2,
                     priorRho = 0.05,
                     priorRhoStdDev = 0.1,
                     forceAccept = FALSE,
                     adjustMethod = c("subtraction", "soupOnly", "multinomial"),
                     roundToInt = FALSE,
                     tol = 0.001,
                     pCut = 0.01) {
    SingleBGBatchForAllBatch <- FALSE
    adjustMethod <- match.arg(adjustMethod)
    if (!is.null(sample)) {
        sample <- .manageCellVar(inSCE, var = sample)
        if (is.factor(sample)) {
            sample <- as.character(sample)
        }
        uniqSample <- unique(sample)
        if (!is.null(background)) {
            if (is.null(bgBatch)) {
                # 'sample' specified, 'bgBatch' not
                bgBatch <- rep("all_cells", ncol(background))
                SingleBGBatchForAllBatch <- TRUE
            } else {
                # 'sample' & 'bgBatch' both specified
                if (length(bgBatch) == 1) {
                    if (!bgBatch %in% names(SummarizedExperiment::colData(background))) {
                        stop("Specified bgBatch variable not found ",
                             "in background colData")
                    }
                    bgBatch <- SummarizedExperiment::colData(background)[[bgBatch]]
                } else if (length(bgBatch) != ncol(background)) {
                    stop("'bgBatch' must be the same length as ",
                         "the number of columns in 'background'")
                }
                if (is.factor(bgBatch)) {
                    bgBatch <- as.character(bgBatch)
                }
                # Check 'sample's in cell matrix can all be found in bgBatch
                if (!all(sample %in% bgBatch)) {
                    stop("Not all samples can be found in 'bgBatch'.")
                }
            }
        }
    } else {
        # 'sample' not specified.
        sample <- rep("all_cells", ncol(inSCE))
        if (!is.null(background)) {
            if (!is.null(bgBatch)) {
                warning("Using all background because 'sample' not specified.")
            }
            bgBatch <- rep("all_cells", ncol(background))
        }
        uniqSample <- "all_cells"
    }
    
    p <- paste0(date(), " ... Running 'SoupX'")
    message(p)

    # try/catch block in case SoupX finds no marker genes
    result <- tryCatch(
        {
            results <- list()
            sampleIdx <- list()
            for (s in uniqSample) {
                p <- paste0(date(), " ... Running 'SoupX' on sample: ", s)
                message(p)
                cellIdx <- sample == s
                sampleIdx[[s]] <- cellIdx
                tempSCE <- inSCE[,cellIdx]
                if (isTRUE(SingleBGBatchForAllBatch)) {
                    res <- .SoupXOneBatch(inSCE = tempSCE,
                                          useAssay = useAssay,
                                          background = background,
                                          bgAssayName = bgAssayName,
                                          cluster = cluster,
                                          reducedDimName = reducedDimName,
                                          tfidfMin = tfidfMin,
                                          soupQuantile = soupQuantile,
                                          maxMarkers = maxMarkers,
                                          contaminationRange = contaminationRange,
                                          rhoMaxFDR = rhoMaxFDR,
                                          priorRho = priorRho,
                                          priorRhoStdDev = priorRhoStdDev,
                                          forceAccept = forceAccept,
                                          adjustMethod = adjustMethod,
                                          roundToInt = roundToInt,
                                          tol = tol,
                                          pCut = pCut)
                } else {
                    if (!is.null(background)) {
                        bgIdx <- bgBatch == s
                        tempBG <- background[,bgIdx]
                    } else {
                        tempBG <- NULL
                    }
                    res <- .SoupXOneBatch(inSCE = tempSCE,
                                          useAssay = useAssay,
                                          background = tempBG,
                                          bgAssayName = bgAssayName,
                                          cluster = cluster,
                                          reducedDimName = reducedDimName,
                                          tfidfMin = tfidfMin,
                                          soupQuantile = soupQuantile,
                                          maxMarkers = maxMarkers,
                                          contaminationRange = contaminationRange,
                                          rhoMaxFDR = rhoMaxFDR,
                                          priorRho = priorRho,
                                          priorRhoStdDev = priorRhoStdDev,
                                          forceAccept = forceAccept,
                                          adjustMethod = adjustMethod,
                                          roundToInt = roundToInt,
                                          tol = tol,
                                          pCut = pCut)
                }
                results[[s]] <- res
            }
            # Initiate new assay by copying the input selection
            # And then replace with new value at sample indices
            # Similarly for colData and rowData
            corrAssay <- SummarizedExperiment::assay(inSCE, useAssay)
            newColData <- SummarizedExperiment::colData(inSCE)
            if (!is.null(background)) {
                newColData$soupX_bg_nUMIs <- NA
                newColData$soupX_bg_clusters <- NA
                newColData$soupX_bg_contamination <- NA
            } else {
                newColData$soupX_nUMIs <- NA
                newColData$soupX_clusters <- NA
                newColData$soupX_contamination <- NA
            }
            newRowData <- SummarizedExperiment::rowData(inSCE)


            for (s in names(results)) {
                corrAssay[,sampleIdx[[s]]] <- results[[s]]$out
                meta <- results[[s]]$sc$fit
                meta$nDropUMIs <- results[[s]]$sc$nDropUMIs
                meta$param <- list(sample = sample, useAssay = useAssay,
                                   bgAssayName = bgAssayName, bgBatch = bgBatch,
                                   assayName = assayName,
                                   tfidfMin = tfidfMin,
                                   soupQuantile = soupQuantile,
                                   maxMarkers = maxMarkers,
                                   contaminationRange = contaminationRange,
                                   rhoMaxFDR = rhoMaxFDR,
                                   priorRho = priorRho,
                                   priorRhoStdDev = priorRhoStdDev,
                                   forceAccept = forceAccept,
                                   adjustMethod = adjustMethod,
                                   roundToInt = roundToInt,
                                   tol = tol,
                                   pCut = pCut,
                                   reducedDimName = paste0(reducedDimName, s),
                                   sessionInfo = utils::sessionInfo())
                # Output inSCE need to have separated UMAP calculated for each sample
                sampleUMAP <- matrix(nrow = ncol(inSCE), ncol = 2)
                rownames(sampleUMAP) <- colnames(inSCE)
                sampleUMAP[sampleIdx[[s]]] <- results[[s]]$umap
                if (!is.null(cluster)) {
                    meta$param$cluster <- cluster
                } else {
                    if (!is.null(background)) {
                        meta$param$cluster <- "soupX_bg_clusters"
                    } else {
                        meta$param$cluster <- "soupX_clusters"
                    }
                }
                if (!is.null(background)) {
                    newColData$soupX_bg_nUMIs[sampleIdx[[s]]] <- results[[s]]$sc$metaData$nUMIs
                    newColData$soupX_bg_clusters[sampleIdx[[s]]] <- paste0(s, "-", results[[s]]$sc$metaData$clusters)
                    newColData$soupX_bg_contamination[sampleIdx[[s]]] <- results[[s]]$sc$metaData$rho
                    newRowData[[paste0("soupX_bg_",s,"_est")]] <- results[[s]]$sc$soupProfile$est
                    newRowData[[paste0("soupX_bg_",s,"_counts")]] <- results[[s]]$sc$soupProfile$counts
                    getSoupX(inSCE, sampleID = s, background = TRUE) <- meta
                } else {
                    newColData$soupX_nUMIs[sampleIdx[[s]]] <- results[[s]]$sc$metaData$nUMIs
                    newColData$soupX_clusters[sampleIdx[[s]]] <- paste0(s, "-", results[[s]]$sc$metaData$clusters)
                    newColData$soupX_contamination[sampleIdx[[s]]] <- results[[s]]$sc$metaData$rho
                    newRowData[[paste0("soupX_",s,"_est")]] <- results[[s]]$sc$soupProfile$est
                    newRowData[[paste0("soupX_",s,"_counts")]] <- results[[s]]$sc$soupProfile$counts
                    getSoupX(inSCE, sampleID = s) <- meta
                }
                SingleCellExperiment::reducedDim(inSCE,
                                                paste0(reducedDimName,
                                                        s)) <- sampleUMAP
            }
            expData(inSCE, assayName, tag = "raw") <- corrAssay
            inSCE <- expSetDataTag(inSCE, "raw", assayName)
            SummarizedExperiment::colData(inSCE) <- newColData
            SummarizedExperiment::rowData(inSCE) <- newRowData
        }, 
        error=function(cond) {
            p <- paste0(date(), " ... Error occured in 'SoupX'; skipping 'SoupX'. Details as follows:")
            message(p)
            message(cond)
        }
    )
    return(inSCE)

    # results <- list()
    # sampleIdx <- list()
    # for (s in uniqSample) {
    #     message(paste0(date(), " ... Running 'SoupX' on sample: ", s))
    #     cellIdx <- sample == s
    #     sampleIdx[[s]] <- cellIdx
    #     tempSCE <- inSCE[,cellIdx]
    #     if (isTRUE(SingleBGBatchForAllBatch)) {
    #         res <- .SoupXOneBatch(inSCE = tempSCE,
    #                               useAssay = useAssay,
    #                               background = background,
    #                               bgAssayName = bgAssayName,
    #                               cluster = cluster,
    #                               reducedDimName = reducedDimName,
    #                               tfidfMin = tfidfMin,
    #                               soupQuantile = soupQuantile,
    #                               maxMarkers = maxMarkers,
    #                               contaminationRange = contaminationRange,
    #                               rhoMaxFDR = rhoMaxFDR,
    #                               priorRho = priorRho,
    #                               priorRhoStdDev = priorRhoStdDev,
    #                               forceAccept = forceAccept,
    #                               adjustMethod = adjustMethod,
    #                               roundToInt = roundToInt,
    #                               tol = tol,
    #                               pCut = pCut)
    #     } else {
    #         if (!is.null(background)) {
    #             bgIdx <- bgBatch == s
    #             tempBG <- background[,bgIdx]
    #         } else {
    #             tempBG <- NULL
    #         }
    #         res <- .SoupXOneBatch(inSCE = tempSCE,
    #                               useAssay = useAssay,
    #                               background = tempBG,
    #                               bgAssayName = bgAssayName,
    #                               cluster = cluster,
    #                               reducedDimName = reducedDimName,
    #                               tfidfMin = tfidfMin,
    #                               soupQuantile = soupQuantile,
    #                               maxMarkers = maxMarkers,
    #                               contaminationRange = contaminationRange,
    #                               rhoMaxFDR = rhoMaxFDR,
    #                               priorRho = priorRho,
    #                               priorRhoStdDev = priorRhoStdDev,
    #                               forceAccept = forceAccept,
    #                               adjustMethod = adjustMethod,
    #                               roundToInt = roundToInt,
    #                               tol = tol,
    #                               pCut = pCut)
    #     }
    #     results[[s]] <- res
    # }
    # # Initiate new assay by copying the input selection
    # # And then replace with new value at sample indices
    # # Similarly for colData and rowData
    # corrAssay <- SummarizedExperiment::assay(inSCE, useAssay)
    # newColData <- SummarizedExperiment::colData(inSCE)
    # if (!is.null(background)) {
    #     newColData$soupX_bg_nUMIs <- NA
    #     newColData$soupX_bg_clusters <- NA
    #     newColData$soupX_bg_contamination <- NA
    # } else {
    #     newColData$soupX_nUMIs <- NA
    #     newColData$soupX_clusters <- NA
    #     newColData$soupX_contamination <- NA
    # }
    # newRowData <- SummarizedExperiment::rowData(inSCE)


    # for (s in names(results)) {
    #     corrAssay[,sampleIdx[[s]]] <- results[[s]]$out
    #     meta <- results[[s]]$sc$fit
    #     meta$nDropUMIs <- results[[s]]$sc$nDropUMIs
    #     meta$param <- list(sample = sample, useAssay = useAssay,
    #                        bgAssayName = bgAssayName, bgBatch = bgBatch,
    #                        assayName = assayName,
    #                        tfidfMin = tfidfMin,
    #                        soupQuantile = soupQuantile,
    #                        maxMarkers = maxMarkers,
    #                        contaminationRange = contaminationRange,
    #                        rhoMaxFDR = rhoMaxFDR,
    #                        priorRho = priorRho,
    #                        priorRhoStdDev = priorRhoStdDev,
    #                        forceAccept = forceAccept,
    #                        adjustMethod = adjustMethod,
    #                        roundToInt = roundToInt,
    #                        tol = tol,
    #                        pCut = pCut,
    #                        reducedDimName = paste0(reducedDimName, s),
    #                        sessionInfo = utils::sessionInfo())
    #     # Output inSCE need to have separated UMAP calculated for each sample
    #     sampleUMAP <- matrix(nrow = ncol(inSCE), ncol = 2)
    #     rownames(sampleUMAP) <- colnames(inSCE)
    #     sampleUMAP[sampleIdx[[s]]] <- results[[s]]$umap
    #     if (!is.null(cluster)) {
    #         meta$param$cluster <- cluster
    #     } else {
    #         if (!is.null(background)) {
    #             meta$param$cluster <- "soupX_bg_clusters"
    #         } else {
    #             meta$param$cluster <- "soupX_clusters"
    #         }
    #     }
    #     if (!is.null(background)) {
    #         newColData$soupX_bg_nUMIs[sampleIdx[[s]]] <- results[[s]]$sc$metaData$nUMIs
    #         newColData$soupX_bg_clusters[sampleIdx[[s]]] <- paste0(s, "-", results[[s]]$sc$metaData$clusters)
    #         newColData$soupX_bg_contamination[sampleIdx[[s]]] <- results[[s]]$sc$metaData$rho
    #         newRowData[[paste0("soupX_bg_",s,"_est")]] <- results[[s]]$sc$soupProfile$est
    #         newRowData[[paste0("soupX_bg_",s,"_counts")]] <- results[[s]]$sc$soupProfile$counts
    #         getSoupX(inSCE, sampleID = s, background = TRUE) <- meta
    #     } else {
    #         newColData$soupX_nUMIs[sampleIdx[[s]]] <- results[[s]]$sc$metaData$nUMIs
    #         newColData$soupX_clusters[sampleIdx[[s]]] <- paste0(s, "-", results[[s]]$sc$metaData$clusters)
    #         newColData$soupX_contamination[sampleIdx[[s]]] <- results[[s]]$sc$metaData$rho
    #         newRowData[[paste0("soupX_",s,"_est")]] <- results[[s]]$sc$soupProfile$est
    #         newRowData[[paste0("soupX_",s,"_counts")]] <- results[[s]]$sc$soupProfile$counts
    #         getSoupX(inSCE, sampleID = s) <- meta
    #     }
    #     SingleCellExperiment::reducedDim(inSCE,
    #                                      paste0(reducedDimName,
    #                                             s)) <- sampleUMAP
    # }
    # expData(inSCE, assayName, tag = "raw") <- corrAssay
    # inSCE <- expSetDataTag(inSCE, "raw", assayName)
    # SummarizedExperiment::colData(inSCE) <- newColData
    # SummarizedExperiment::rowData(inSCE) <- newRowData
    # return(inSCE)
}

.SoupXOneBatch <- function(inSCE,
                           useAssay,
                           background,
                           bgAssayName,
                           cluster,
                           reducedDimName,
                           tfidfMin,
                           soupQuantile,
                           maxMarkers,
                           contaminationRange,
                           rhoMaxFDR,
                           priorRho,
                           priorRhoStdDev,
                           forceAccept,
                           adjustMethod,
                           roundToInt,
                           tol,
                           pCut) {
    # Building SoupX's SoupChannel object
    toc <- expData(inSCE, useAssay)
    if (is.null(background)) {
        scNoDrops <- SoupX::SoupChannel(toc, toc, calcSoupProfile = FALSE)
        soupProf <- data.frame(row.names = rownames(toc),
                               est = rowSums(toc)/sum(toc),
                               counts = rowSums(toc))
        sc <- SoupX::setSoupProfile(scNoDrops, soupProf)
    } else {
        if (inherits(background, "SingleCellExperiment")) {
            if (is.null(bgAssayName)) {
                bgAssayName <- useAssay
            }
            tod <- SummarizedExperiment::assay(background, bgAssayName)
        } else {
            tod <- background
        }
        sc <- SoupX::SoupChannel(tod, toc)
    }

    # Adding cluster info
    if (!is.null(cluster)) {
        if (is.character(cluster) & length(cluster) == 1) {
            cluster <- SummarizedExperiment::colData(inSCE)[[cluster]]
            names(cluster) <- colnames(inSCE)
            sc <- SoupX::setClusters(sc, cluster)
        } else if (length(cluster) == ncol(inSCE)) {
            names(cluster) <- colnames(inSCE)
            sc <- SoupX::setClusters(sc, cluster)
        } else {
            stop("Invalid cluster specification")
        }
    } else {
        p <- paste0(date(), " ... Cluster info not supplied. Generating clusters with Scran SNN")
        message(p)
        suppressMessages({
            c <- scran::quickCluster(inSCE, assay.type = useAssay,
                                     method = "igraph")
            inSCE$SoupX_cluster <- c
        })
        sc <- SoupX::setClusters(sc, stats::setNames(inSCE$SoupX_cluster,
                                                    colnames(inSCE)))
    }

    sc <- SoupX::autoEstCont(sc, doPlot = FALSE, tfidfMin = tfidfMin,
                             soupQuantile = soupQuantile,
                             maxMarkers = maxMarkers,
                             contaminationRange = contaminationRange,
                             rhoMaxFDR = rhoMaxFDR, priorRho = priorRho,
                             priorRhoStdDev = priorRhoStdDev,
                             forceAccept = forceAccept)

    out <- SoupX::adjustCounts(sc, method = adjustMethod,
                               roundToInt = roundToInt, tol = tol, pCut = pCut)
    inSCE <- runQuickUMAP(inSCE, useAssay = useAssay, sample = NULL,
                          reducedDimName = "sampleUMAP", verbose = FALSE)
    return(list(sc = sc, out = out,
                umap = SingleCellExperiment::reducedDim(inSCE, "sampleUMAP")))
}

#' @title Get or Set SoupX Result
#' @rdname getSoupX
#' @description S4 method for getting and setting SoupX results that cannot be
#' appended to either \code{rowData(inSCE)} or \code{colData(inSCE)}.
#' @param inSCE A \linkS4class{SingleCellExperiment} object. For getter method,
#' \code{\link{runSoupX}} must have been already applied.
#' @param sampleID Character vector. For getter method, the samples that should
#' be included in the returned list. Leave this \code{NULL} for all samples.
#' Default \code{NULL}. For setter method, only one sample allowed.
#' @param background Logical. Whether \code{background} was applied when
#' running \code{\link{runSoupX}}. Default \code{FALSE}.
#' @param value Dedicated list object of SoupX results.
#' @return For getter method, a list with SoupX results for specified samples.
#' For setter method, \code{inSCE} with SoupX results updated.
#' @seealso runSoupX, plotSoupXResults
#' @export
#' @examples
#' \dontrun{
#' sce <- importExampleData("pbmc3k")
#' sce <- runSoupX(sce, sample = "sample")
#' soupXResults <- getSoupX(sce)
#' }
setGeneric("getSoupX<-", function(inSCE, sampleID, background = FALSE, value)
    standardGeneric("getSoupX<-") )

#' @title Insert SoupX result to SCE object
#' @rdname getSoupX
#' @export
setGeneric("getSoupX", function(inSCE, sampleID = NULL, background = FALSE)
    standardGeneric("getSoupX") )

#' @title Get or Set SoupX Result
#' @rdname getSoupX
#' @description S4 method for getting and setting SoupX results that cannot be
#' appended to either \code{rowData(inSCE)} or \code{colData(inSCE)}.
#' @param inSCE A \linkS4class{SingleCellExperiment} object. For getter method,
#' \code{\link{runSoupX}} must have been already applied.
#' @param sampleID Character vector. For getter method, the samples that should
#' be included in the returned list. Leave this \code{NULL} for all samples.
#' Default \code{NULL}. For setter method, only one sample allowed.
#' @param background Logical. Whether \code{background} was applied when
#' running \code{\link{runSoupX}}. Default \code{FALSE}.
#' @param value Dedicated list object of SoupX results.
#' @return For getter method, a list with SoupX results for specified samples.
#' For setter method, \code{inSCE} with SoupX results updated.
#' @export
setMethod("getSoupX",
          "SingleCellExperiment",
          function(inSCE,
                   sampleID = NULL,
                   background = FALSE){
    if (isTRUE(background)) {
        all.results <- S4Vectors::metadata(inSCE)$sctk$runSoupX_bg
    } else {
        all.results <- S4Vectors::metadata(inSCE)$sctk$runSoupX
    }
    if (is.null(all.results)) {
        stop("No result from 'SoupX' is found. Please run `runSoupX()` first, ",
             "or check the setting of `background`.")
    }
    results <- all.results
    if (!is.null(sampleID)) {
        if (!all(sampleID  %in% names(all.results))) {
            stop("Sample(s) not found in the results for tool 'SoupX': ",
                 paste(sampleID[!sampleID %in% names(all.results)], 
                       collapse = ", "))
        }
        results <- all.results[sampleID]
    }
    return(results)
})

#' @title Insert SoupX result to SCE object
#' @rdname getSoupX
#' @export
setReplaceMethod("getSoupX",
                 c("SingleCellExperiment"),
                 function(inSCE,
                          sampleID,
                          background = FALSE,
                          value) {
                     if (isTRUE(background)) {
                         inSCE@metadata$sctk$runSoupX_bg[[sampleID]] <- value
                     } else {
                         inSCE@metadata$sctk$runSoupX[[sampleID]] <- value
                     }
                     return(inSCE)
                 })

#' Plot SoupX Result
#' @description This function will generate a combination of plots basing on the
#' correction done by SoupX. For each sample, there will be a UMAP with cluster
#' labeling, followed by a number of UMAPs showing the change in selected top
#' markers. The cluster labeling is what should be used for SoupX to estimate
#' the contamination. The Soup Fraction is calculated by subtracting the gene
#' expression value of the output corrected matrix from that of the original
#' input matrix, and then devided by the input.
#' @param inSCE A \linkS4class{SingleCellExperiment} object. With
#' \code{\link{runSoupX}} already applied.
#' @param sample Character vector. Indicates which sample each cell belongs to.
#' Default \code{NULL}.
#' @param background Logical. Whether \code{background} was applied when
#' running \code{\link{runSoupX}}. Default \code{FALSE}.
#' @param reducedDimName Character. The embedding to use for plotting. Leave it
#' \code{NULL} for using the sample-specific UMAPs generated when running
#' \code{\link{runSoupX}}. Default \code{NULL}.
#' @param plotNCols Integer. Number of columns for the plot grid per sample.
#' Will determine the number of top markers to show together with
#' \code{plotNRows}. Default \code{3}.
#' @param plotNRows Integer. Number of rows for the plot grid per sample. Will
#' determine the number of top markers to show together with \code{plotNCols}.
#' Default \code{2}.
#' @param baseSize Numeric. The base font size for all text. Default 12. Can be
#' overwritten by titleSize, axisSize, and axisLabelSize, legendSize,
#' legendTitleSize. Default \code{8}.
#' @param combinePlot Must be either \code{"all"}, \code{"sample"}, or
#' \code{"none"}. \code{"all"} will combine all plots into a single
#' \code{.ggplot} object, while \code{"sample"} will output a list of plots
#' separated by sample. Default \code{"all"}.
#' @param xlab Character vector. Label for x-axis. Default \code{NULL}.
#' @param ylab Character vector. Label for y-axis. Default \code{NULL}.
#' @param dim1 See \code{\link{plotSCEDimReduceColData}}. Default \code{NULL}.
#' @param dim2 See \code{\link{plotSCEDimReduceColData}}. Default \code{NULL}.
#' @param labelClusters Logical. Whether the cluster labels are plotted. Default
#' \code{FALSE}.
#' @param clusterLabelSize Numeric. Determines the size of cluster label when
#' \code{labelClusters} is set to \code{TRUE}. Default \code{3.5}.
#' @param defaultTheme Logical. Adds grid to plot when \code{TRUE}. Default
#' \code{TRUE}.
#' @param dotSize Numeric. Size of dots. Default \code{0.5}.
#' @param transparency Numeric. Transparency of the dots, values will be from 0
#' to 1. Default \code{1}.
#' @param titleSize Numeric. Size of title of plot. Default \code{15}.
#' @param axisLabelSize Numeric. Size of x/y-axis labels. Default \code{NULL}.
#' @param axisSize Numeric. Size of x/y-axis ticks. Default \code{NULL}.
#' @param legendSize Numeric. Size of legend. Default \code{NULL}.
#' @param legendTitleSize Numeric. Size of legend title. Default \code{NULL}.
#' @return ggplot object of the combination of UMAPs. See description.
#' @seealso runSoupX
#' @export
#' @examples
#' \dontrun{
#' sce <- importExampleData("pbmc3k")
#' sce <- runSoupX(sce, sample = "sample")
#' plotSoupXResults(sce, sample = "sample")
#' }
plotSoupXResults <- function(inSCE,
                            sample = NULL,
                            background = FALSE,
                            reducedDimName=NULL,
                            plotNCols = 3,
                            plotNRows = 2,
                            baseSize=8,
                            combinePlot = c("all", "sample", "none"),
                            xlab=NULL,
                            ylab=NULL,
                            dim1=NULL,
                            dim2=NULL,
                            labelClusters = FALSE,
                            clusterLabelSize = 3.5,
                            defaultTheme=TRUE,
                            dotSize=0.5,
                            transparency=1,
                            titleSize=NULL,
                            axisLabelSize=NULL,
                            axisSize=NULL,
                            legendSize=NULL,
                            legendTitleSize=NULL
                            )
{
    combinePlot <- match.arg(combinePlot)
    sample <- .manageCellVar(inSCE, var = sample)
    samples <- unique(sample)
    results <- getSoupX(inSCE, sampleID = samples, background = background)
    # Doing this redundancy-like step because: If sample given NULL when running
    # runSoupX(), the actual sample label saved will be "all_cells", which users
    # won't know.
    samplePlots <- list()
    for (s in samples) {
        param <- results[[s]]$param
        sampleIdx <- sample == s
        tmpSCE <- inSCE[,sampleIdx]
        markerTable <- results[[s]]$markersUsed
        markerTable <- markerTable[order(markerTable$qval),]
        # Iteratively pop out the top significant marker from each cluster.
        # i.e. Get top marker from c1 to cn, then the second top marker again
        # from c1 to cn, as long as there is still a marker for cn.
        uniqCluster <- unique(markerTable$cluster)
        markerToUse <- character()
        markerClusterMap <- character()
        nMarkerToUse <- plotNCols * plotNRows - 1
        nIter <- 0
        while (length(markerToUse) < nMarkerToUse) {
            nIter <- nIter + 1
            # c is the cluster to look at in this iteration
            c <- uniqCluster[(nIter - 1) %% length(uniqCluster) + 1]
            markerPerCluster <- markerTable[markerTable$cluster == c,]
            topMarker <- markerPerCluster[1, "gene"]
            markerToUse <- c(markerToUse, topMarker)
            markerClusterMap <- c(markerClusterMap, c)
            markerTable <- markerTable[-which(markerTable$gene == topMarker),]
        }
        names(markerClusterMap) <- markerToUse
        # Get the per-sample UMAP if not specifying one
        useRedDim <- reducedDimName
        if (is.null(reducedDimName)) {
            useRedDim <- param$reducedDimName
        }
        plotList <- list(
            scatter_soupXClusters =
                plotSCEDimReduceColData(tmpSCE,
                                        param$cluster,
                                        useRedDim,
                                        title = "Cluster",
                                        labelClusters = labelClusters,
                                        clusterLabelSize = clusterLabelSize,
                                        xlab = xlab,
                                        ylab = ylab,
                                        dim1 = dim1,
                                        dim2 = dim2,
                                        defaultTheme = defaultTheme,
                                        dotSize = dotSize,
                                        transparency = transparency,
                                        baseSize = baseSize,
                                        titleSize = titleSize,
                                        axisLabelSize = axisLabelSize,
                                        axisSize = axisSize,
                                        legendSize = legendSize,
                                        legendTitleSize = legendTitleSize)
            )
        for (g in markerToUse) {
            # Soup fraction was calculated basing on SoupX's original method.
            # Credit to SoupX::plotChangeMap
            oldName <- param$useAssay
            newName <- param$assayName
            old <- colSums(assay(tmpSCE, oldName)[g, , drop = FALSE])
            new <- colSums(assay(tmpSCE, newName)[g, , drop = FALSE])
            relChange = (old - new)/old
            zLims = c(0, 1)
            relChange[which(relChange < zLims[1])] = zLims[1]
            relChange[which(relChange > zLims[2])] = zLims[2]
            relChange[which(is.na(relChange))] = 0
            # Start to generate the plot
            tmpSCE$Soup_Frac <- relChange
            legendTitle <- paste0(markerClusterMap[g], ":", g, ", ", s)
            plotList[[g]] <- plotSCEDimReduceColData(tmpSCE,
                                                     "Soup_Frac",
                                                     useRedDim,
                                                     legendTitle = "Soup_Frac",
                                                     title = legendTitle,
                                                     xlab=xlab,
                                                     ylab=ylab,
                                                     dim1=dim1,
                                                     dim2=dim2,
                                                     defaultTheme=defaultTheme,
                                                     dotSize=dotSize,
                                                     transparency=transparency,
                                                     baseSize=baseSize,
                                                     titleSize=titleSize,
                                                     axisLabelSize=axisLabelSize,
                                                     axisSize=axisSize,
                                                     legendSize=legendSize,
                                                     legendTitleSize=legendTitleSize
                                                     )
        }
        if (combinePlot %in% c("sample", "all")) {
            samplePlots[[s]] <- .ggSCTKCombinePlots(plotList,
                                                    plotNCols)
        } else if (combinePlot == "none") {
            samplePlots[[s]] <- plotList
        }
    }
    finalPlotList <- list(Sample = samplePlots)
    if (combinePlot == "all") {
        finalPlotList <- .ggSCTKCombinePlots(finalPlotList$Sample, ncols = 1)
    }
    if (length(samples) == 1) {
        if (combinePlot %in% c("none", "sample")) {
            finalPlotList <- finalPlotList$Sample[[1]]
        }
    }
    return(finalPlotList)
}
compbiomed/singleCellTK documentation built on Oct. 27, 2024, 3:26 a.m.