normal_nearest_neighbor_sample: Extract the distance to each nearest neighbor for specified...

Description Usage Arguments Value Examples

Description

Extract the distance to each nearest neighbor for specified cell-types, normalized by downsampling each cell-type to the same size (the smallest population from among the specified markers), calculates for a single specified sample

Usage

1
2
3
4
5
6
7
8
normal_nearest_neighbor_sample(sample_name, data, markers, n_resamples = 500,
  minimum_cells = 50, quantiles = c(0.05, 0.25, 0.5, 0.75, 0.95),
  grouped_sample = TRUE)

## S4 method for signature 'character,ImageSet'
normal_nearest_neighbor_sample(sample_name, data,
  markers, n_resamples = 500, minimum_cells = 50, quantiles = c(0.05,
  0.25, 0.5, 0.75, 0.95), grouped_sample = TRUE)

Arguments

sample_name

string name of the sample

data

IrisSpatialFeatures ImageSet object

markers

vector of marker names to use

n_resamples

number of times to resample each frame (default:500)

minimum_cells

smallest number of cells to consider a frame (default:50)

quantiles

vector of numeric fractions to include in vector to show the mean distance calculated across resamplings (default:c(0.05,0.25,0.5,0.75,0.95))

grouped_sample

TRUE/FALSE group samples together (default:TRUE)

Value

data.frame

Examples

1
2
3
#loading pre-read dataset
dataset <- IrisSpatialFeatures_data
normal_nearest_neighbor_sample("MEL2",dataset,c("SOX10+ PDL1+","SOX10+ PDL1-"),10)

gusef/Iris documentation built on May 14, 2019, 2:42 p.m.