Description Usage Arguments Details Value Author(s) References See Also
Calculates residuals using
\boldsymbol{\hat{\varepsilon}} = \mathbf{My} .
where
\mathbf{M} = \mathbf{I} - \mathbf{P} \\ = \mathbf{I} - \mathbf{X} ≤ft( \mathbf{X}^{T} \mathbf{X} \right)^{-1} \mathbf{X}^{T} .
1 |
y |
Numeric vector of length |
M |
|
X |
|
P |
|
If M = NULL
, the M
matrix is computed using M()
with X
as a required argument and P
as an optional argument.
If M
is provided, X
and P
are not needed.
Returns an n \times 1 matrix of residuals ≤ft( \boldsymbol{\hat{\varepsilon}} \right), that is, the difference between the observed ≤ft( \mathbf{y} \right) and predicted ≤ft( \mathbf{\hat{y}} \right) values of the regressand variable ≤ft( \boldsymbol{\hat{\varepsilon}} = \mathbf{y} - \mathbf{\hat{y}} \right).
Ivan Jacob Agaloos Pesigan
Wikipedia: Errors and Residuals
Other residuals functions:
.tepsilonhat()
,
.yminusyhat()
,
My()
,
epsilonhat()
,
tepsilonhat()
,
yminusyhat()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.