betahat: Estimates of Regression Coefficients \boldsymbol{\hat{beta}}

Description Usage Arguments Details Value Author(s) References See Also Examples

View source: R/betahat.R

Description

Estimates coefficients of a linear regression model.

Usage

1
betahat(X, y, qr = TRUE)

Arguments

X

n by k numeric matrix. The data matrix \mathbf{X} (also known as design matrix, model matrix or regressor matrix) is an n \times k matrix of n observations of k regressors, which includes a regressor whose value is 1 for each observation on the first column.

y

Numeric vector of length n or n by 1 matrix. The vector \mathbf{y} is an n \times 1 vector of observations on the regressand variable.

qr

Logical. If TRUE, use QR decomposition when normal equations fail. If FALSE, use singular value decompositon when normal equations fail.

Details

Calculates coefficients using the normal equation. When that fails, QR decomposition is used when qr = TRUE or singular value decomposition when qr = FALSE.

Value

Returns \boldsymbol{\hat{β}}, that is, a k \times 1 vector of estimates of k unknown regression coefficients estimated using ordinary least squares.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Wikipedia: Linear regression

Wikipedia: Ordinary least squares

Wikipedia: Inverting the matrix of the normal equations

Wikipedia: QR decomposition

Wikipedia: Singular value decomposition

Wikipedia: Orthogonal decomposition methods

Wikipedia: Design matrix

See Also

Other beta-hat functions: .betahatnorm(), .betahatqr(), .betahatsvd(), .intercepthat(), .slopeshatprime(), .slopeshat(), intercepthat(), slopeshatprime(), slopeshat()

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
# Simple regression------------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
X <- X[, c(1, ncol(X))]
y <- jeksterslabRdatarepo::wages.matrix[["y"]]
betahat(X = X, y = y)

# Multiple regression----------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
# age is removed
X <- X[, -ncol(X)]
betahat(X = X, y = y)

jeksterslabds/jeksterslabRlinreg documentation built on Jan. 7, 2021, 8:30 a.m.