Description Usage Arguments Details Value Author(s) See Also
Estimates of Regression Slopes \boldsymbol{\hat{β}}_{2, \cdots, k}
1 | .slopeshat(SigmaXhat = NULL, sigmayXhat = NULL, X, y)
|
SigmaXhat |
|
sigmayXhat |
Numeric vector of length |
X |
|
y |
Numeric vector of length |
Estimates of the linear regression slopes are calculated using
\boldsymbol{\hat{β}}_{2, \cdots, k} = \boldsymbol{\hat{Σ}}_{\mathbf{X}}^{T} \boldsymbol{\hat{σ}}_{\mathbf{y}, \mathbf{X}}
where
\boldsymbol{\hat{Σ}}_{\mathbf{X}} is the p \times p covariance matrix of the regressor variables X_2, X_3, \cdots, X_k and
\boldsymbol{\hat{σ}}_{\mathbf{y}, \mathbf{X}} is the p \times 1 column vector of the covariances between the regressand y variable and regressor variables X_2, X_3, \cdots, X_k
Returns the estimated slopes \boldsymbol{\hat{β}}_{2, \cdots, k} of a linear regression model derived from the estimated variance-covariance matrix.
Ivan Jacob Agaloos Pesigan
Other beta-hat functions:
.betahatnorm()
,
.betahatqr()
,
.betahatsvd()
,
.intercepthat()
,
.slopeshatprime()
,
betahat()
,
intercepthat()
,
slopeshatprime()
,
slopeshat()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.