Description Usage Arguments Details Value Author(s) See Also
Derives the intercept β_1 of a linear regression model from the p \times 1 regression slopes ≤ft( \boldsymbol{β}_{2, \cdots, k} \right), the mean of the regressand ≤ft( μ_y \right), and the p \times 1 means of regressors {X}_{2}, {X}_{3}, …, {X}_{k} ≤ft( \boldsymbol{μ}_{\mathbf{X}} \right) .
1  | .intercept(slopes = NULL, muy = NULL, muX = NULL, X, y)
 | 
slopes | 
 Numeric vector of length   | 
muy | 
 Numeric. Mean of the regressand variable ≤ft( μ_{\mathbf{y}} \right) .  | 
muX | 
 Numeric vector of length   | 
X | 
 
  | 
y | 
 Numeric vector of length   | 
The intercept β_1 is given by
β_1 = μ_y - \boldsymbol{μ}_{\mathbf{X}} \boldsymbol{β}_{2, \cdots, k}^{T} .
Returns the intercept β_1 of a linear regression model derived from the means and the slopes ≤ft( \boldsymbol{β}_{2, \cdots, k} \right) .
Ivan Jacob Agaloos Pesigan
Other parameter functions: 
.slopesprime(),
.slopes(),
intercept(),
sigma2epsilon(),
slopesprime(),
slopes()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.