betahatinference: Regression Coefficients Hypothesis Test and Confidence...

Description Usage Arguments Value Author(s) See Also Examples

View source: R/betahatinference.R

Description

Regression Coefficients Hypothesis Test and Confidence Intervals

Usage

1

Arguments

X

n by k numeric matrix. The data matrix \mathbf{X} (also known as design matrix, model matrix or regressor matrix) is an n \times k matrix of n observations of k regressors, which includes a regressor whose value is 1 for each observation on the first column.

y

Numeric vector of length n or n by 1 matrix. The vector \mathbf{y} is an n \times 1 vector of observations on the regressand variable.

Value

Returns a matrix with the following columns

coef

Coefficients.

se

Standard error.

t

t-statistic.

p

p-value.

ci_0.05

Lower limit 99.99% confidence interval.

ci_0.5

Lower limit 99% confidence interval.

ci_2.5

Lower limit 95% confidence interval.

ci_97.5

Upper limit 95% confidence interval.

ci_99.5

Upper limit 99% confidence interval.

ci_99.95

Upper limit 99.99% confidence interval.

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other inference functions: .betahatinference(), .slopeshatprimeinference(), slopeshatprimeinference()

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
# Simple regression------------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
X <- X[, c(1, ncol(X))]
y <- jeksterslabRdatarepo::wages.matrix[["y"]]
betahatinference(X = X, y = y)

# Multiple regression----------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
# age is removed
X <- X[, -ncol(X)]
betahatinference(X = X, y = y)

jeksterslabds/jeksterslabRlinreg documentation built on Jan. 7, 2021, 8:30 a.m.