Description Usage Arguments Details Value Author(s) References See Also
Calculates the explained sum of squares ≤ft( \mathrm{ESS} \right) using
\mathrm{ESS} = ∑_{i = 1}^{n} ≤ft( \hat{Y}_{i} - \bar{Y} \right)^2 \\ = ∑_{i = 1}^{n} ≤ft( \hat{β}_{1} + \hat{β}_{2} X_{2i} + \hat{β}_{3} X_{3i} + … + \hat{β}_{k} X_{ki} - \bar{Y} \right)^2
In matrix form
\mathrm{ESS} = ∑_{i = 1}^{n} ≤ft( \mathbf{\hat{y}} - \mathbf{\bar{Y}} \right)^2 \\ = ∑_{i = 1}^{n} ≤ft( \mathbf{X} \boldsymbol{\hat{β}} - \mathbf{\bar{Y}} \right)^2
where \mathbf{\hat{y}} ≤ft( \mathbf{X} \boldsymbol{\hat{β}} \right) is an n \times 1 matrix of predicted values of \mathbf{y}, and \mathbf{\bar{Y}} is the mean of \mathbf{y}. Equivalent computational matrix formula
\mathrm{ESS} = \boldsymbol{\hat{β}}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\hat{β}} - n \mathbf{\bar{Y}}^{2}.
Note that
\mathrm{TSS} = \mathrm{ESS} + \mathrm{RSS} .
1 |
yhat |
Numeric vector of length |
ybar |
Numeric.
Mean of |
X |
|
y |
Numeric vector of length |
betahat |
Numeric vector of length |
If yhat = NULL
, it is computed using yhat()
with X
and y
as required arguments and betahat
as an optional argument.
Returns the explained sum of squares ≤ft( \mathrm{ESS} \right).
Ivan Jacob Agaloos Pesigan
Wikipedia: Residual Sum of Squares
Wikipedia: Explained Sum of Squares
Wikipedia: Total Sum of Squares
Wikipedia: Coefficient of Determination
Other sum of squares functions:
.RSS()
,
ESS()
,
RSS()
,
TSS()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.