h: Leverage

Description Usage Arguments Value Author(s) References See Also Examples

View source: R/leverage.R

Description

Calculates leverage, that is, how far away the regressor values of an observation are from those of the other observations using

h_{ii} = x_{i}^{T} ≤ft( \mathbf{X}^{T} \mathbf{X} \right)^{-1} x_{i}

where x_{i}^{T} is the ith row of the \mathbf{X} matrix. Note that \mathbf{X} ≤ft( \mathbf{X}^{T} \mathbf{X} \right)^{-1} \mathbf{X}^{T} is the projection matrix (or hat matrix) \mathbf{P} and h_{ii} is the diagonal of \mathbf{P}.

Usage

1
h(X)

Arguments

X

n by k numeric matrix. The data matrix \mathbf{X} (also known as design matrix, model matrix or regressor matrix) is an n \times k matrix of n observations of k regressors, which includes a regressor whose value is 1 for each observation on the first column.

Value

Returns leverage.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Wikipedia: Leverage

See Also

Other projection matrix functions: .M(), .h(), M(), P()

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
# Simple regression------------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
X <- X[, c(1, ncol(X))]
h <- h(X = X)
hist(h)

# Multiple regression----------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
# age is removed
X <- X[, -ncol(X)]
h <- h(X = X)
hist(h)

jeksterslabds/jeksterslabRlinreg documentation built on Jan. 7, 2021, 8:30 a.m.