Description Usage Arguments Value Author(s) References See Also Examples
Calculates the mean squared error ≤ft( \mathrm{MSE} \right) using
\mathrm{MSE} = \frac{1}{n} ∑_{i = 1}^{n} ≤ft( \mathbf{y} - \mathbf{X} \boldsymbol{\hat{β}} \right)^{2} \\ = \frac{1}{n} ∑_{i = 1}^{n} ≤ft( \mathbf{y} - \mathbf{\hat{y}} \right)^{2} \\ = \frac{\mathrm{RSS}}{n} .
1 | MSE(X, y)
|
X |
|
y |
Numeric vector of length |
Returns the mean squared error.
Ivan Jacob Agaloos Pesigan
Other assessment of model quality functions:
.MSE()
,
.R2fromESS()
,
.R2fromRSS()
,
.RMSE()
,
.Rbar2()
,
.model()
,
R2()
,
RMSE()
,
Rbar2()
,
model()
1 2 3 4 5 6 7 8 9 10 11 | # Simple regression------------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
X <- X[, c(1, ncol(X))]
y <- jeksterslabRdatarepo::wages.matrix[["y"]]
MSE(X = X, y = y)
# Multiple regression----------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
# age is removed
X <- X[, -ncol(X)]
MSE(X = X, y = y)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.