Description Usage Arguments Details Value Author(s) References See Also
Calculates the mean squared error ≤ft( \mathrm{MSE} \right) using
\mathrm{MSE} = \frac{1}{n} ∑_{i = 1}^{n} ≤ft( \mathbf{y} - \mathbf{X} \boldsymbol{\hat{β}} \right)^{2} \\ = \frac{1}{n} ∑_{i = 1}^{n} ≤ft( \mathbf{y} - \mathbf{\hat{y}} \right)^{2} \\ = \frac{\mathrm{RSS}}{n} .
1 |
RSS |
Numeric. Residual sum of squares. |
n |
Integer. Sample size. |
X |
|
y |
Numeric vector of length |
If RSS = NULL
, the RSS
vector is computed using RSS()
with X
and y
as required arguments.
If RSS
is provided, X
, and y
are not needed.
Returns the mean squared error.
Ivan Jacob Agaloos Pesigan
Other assessment of model quality functions:
.R2fromESS()
,
.R2fromRSS()
,
.RMSE()
,
.Rbar2()
,
.model()
,
MSE()
,
R2()
,
RMSE()
,
Rbar2()
,
model()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.