Description Usage Arguments Details Value Author(s) References See Also Examples
Calculates the residual sum of squares ≤ft( \mathrm{RSS} \right) using
\mathrm{RSS} = ∑_{i = 1}^{n} ≤ft( Y_i - \hat{Y}_i \right)^2 \\ = ∑_{i = 1}^{n} ≤ft( Y_i - ≤ft[ \hat{β}_{1} + \hat{β}_{2} X_{2i} + \hat{β}_{3} X_{3i} + … + \hat{β}_{k} X_{ki} \right] \right)^2 \\ = ∑_{i = 1}^{n} ≤ft( Y_i - \hat{β}_{1} - \hat{β}_{2} X_{2i} - \hat{β}_{3} X_{3i} - … - \hat{β}_{k} X_{ki} \right)^2 .
In matrix form
\mathrm{RSS} = ∑_{i = 1}^{n} ≤ft( \mathbf{y} - \mathbf{\hat{y}} \right)^{2} \\ = ∑_{i = 1}^{n} ≤ft( \mathbf{y} - \mathbf{X} \boldsymbol{\hat{β}} \right)^{2} \\ = ≤ft( \mathbf{y} - \mathbf{X} \boldsymbol{\hat{β}} \right)^{\prime} ≤ft( \mathbf{y} - \mathbf{X} \boldsymbol{\hat{β}} \right) .
Or simply
\mathrm{RSS} = ∑_{i = 1}^{n} \boldsymbol{\hat{\varepsilon}}_{i}^{2} = \boldsymbol{\hat{\varepsilon}}^{\prime} \boldsymbol{\hat{\varepsilon}}
where \boldsymbol{\hat{\varepsilon}} is an n \times 1 vector of residuals, that is, the difference between the observed and predicted value of \mathbf{y} ≤ft( \boldsymbol{\hat{\varepsilon}} = \mathbf{y} - \mathbf{\hat{y}} \right). Equivalent computational matrix formula
\mathrm{RSS} = \mathbf{y}^{\prime} \mathbf{y} - 2 \boldsymbol{\hat{β}} \mathbf{X}^{\prime} \mathbf{y} + \boldsymbol{\hat{β}}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\hat{β}}.
Note that
\mathrm{TSS} = \mathrm{ESS} + \mathrm{RSS}.
1 | RSS(X, y)
|
X |
|
y |
Numeric vector of length |
If betahat = NULL
, betahat
computed using betahat()
.
Returns residual sum of squares ≤ft( \mathrm{RSS} \right).
Ivan Jacob Agaloos Pesigan
Wikipedia: Residual Sum of Squares
Wikipedia: Explained Sum of Squares
Wikipedia: Total Sum of Squares
Wikipedia: Coefficient of Determination
Other sum of squares functions:
.ESS()
,
.RSS()
,
ESS()
,
TSS()
1 2 3 4 5 6 7 8 9 10 11 | # Simple regression------------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
X <- X[, c(1, ncol(X))]
y <- jeksterslabRdatarepo::wages.matrix[["y"]]
RSS(X = X, y = y)
# Multiple regression----------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
# age is removed
X <- X[, -ncol(X)]
RSS(X = X, y = y)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.