Description Usage Arguments Details Author(s) References See Also
Standard Errors of Standardized Estimates of Regression Coefficients (Textbook)
1 2 3 4 5 6 7 | .sehatslopeshatprimetb(
slopeshat = NULL,
sehatslopeshat = NULL,
slopeshatprime = NULL,
X,
y
)
|
slopeshat |
Numeric vector of length |
sehatslopeshat |
Numeric vector of length |
slopeshatprime |
Numeric vector of length |
X |
|
y |
Numeric vector of length |
\mathbf{\widehat{se}}_{\boldsymbol{\hat{β}}_{2, \cdots, k}^{\prime}} = \mathbf{\widehat{se}}_{\boldsymbol{\hat{β}}_{2, \cdots, k}} \frac{\boldsymbol{\hat{β}}_{2, \cdots, k}^{\prime}}{\boldsymbol{\hat{β}}_{2, \cdots, k}}
According to Yuan and Chan (2011), this standard error is biased.
Ivan Jacob Agaloos Pesigan
Yuan, K., Chan, W. (2011). Biases and Standard Errors of Standardized Regression Coefficients. Psychometrika 76, 670-690. doi:10.1007/s11336-011-9224-6.
Other standard errors of estimates of regression coefficients functions:
.sehatbetahatbiased()
,
.sehatbetahat()
,
.sehatslopeshatprimedelta()
,
sehatbetahatbiased()
,
sehatbetahat()
,
sehatslopeshatprimedelta()
,
sehatslopeshatprimetb()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.