Description Usage Arguments Details Value Author(s) See Also
Estimates of Regression Standardized Slopes \boldsymbol{\hat{β}}_{2, \cdots, k}^{\prime}
1 | .slopeshatprime(RXhat = NULL, ryXhat = NULL, X, y)
|
RXhat |
|
ryXhat |
Numeric vector of length |
X |
|
y |
Numeric vector of length |
Estimates of the linear regression standardized slopes are calculated using
\boldsymbol{\hat{β}}_{2, \cdots, k}^{\prime} = \mathbf{\hat{R}}_{\mathbf{X}}^{T} \mathbf{\hat{r}}_{\mathbf{y}, \mathbf{X}}
where
\mathbf{\hat{R}}_{\mathbf{X}} is the p \times p estimated correlation matrix of the regressor variables X_2, X_3, \cdots, X_k and
\mathbf{\hat{r}}_{\mathbf{y}, \mathbf{X}} is the p \times 1 column vector of the estimated correlations between the regressand y variable and regressor variables X_2, X_3, \cdots, X_k
Returns the estimated standardized slopes \boldsymbol{\hat{β}}_{2, \cdots, k}^{\prime} of a linear regression model derived from the estimated correlation matrix.
Ivan Jacob Agaloos Pesigan
Other beta-hat functions:
.betahatnorm()
,
.betahatqr()
,
.betahatsvd()
,
.intercepthat()
,
.slopeshat()
,
betahat()
,
intercepthat()
,
slopeshatprime()
,
slopeshat()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.