Description Usage Arguments Value Author(s) Examples
Descriptive Statistics
1 2 3 4 5 6 7 8 9 10 |
X |
|
y |
Numeric vector of length |
varnamesX |
Optional. Character vector of length |
varnamey |
Optional. Character string.
Variable name for vector |
plot |
Logical. Display scatter plot matrix. |
moments |
Logical. Print central moments (means, standard deviations, skewness, and kurtosis). |
cor |
Logical. Print correlations. |
mardia |
Logical. Estimate Mardia's multivariate skewness and kurtosis. |
Returns a list with the following elements:
n \times k matrix of n observations of k regressors, which includes a regressor whose value is 1 for each observation on the first column.
n \times 1 matrix of observations on the regressand variable.
n \times k matrix with the following columns y, X_2, X_3, \cdots, X_k.
Sample size.
Number of regressors which includes a regressor whose value is 1 for each observation on the first column.
Number of partial regression coefficients are slopes.
Degrees of freedom 1.
Degrees of freedom 2.
Vector of length p of estimated means of X_2, X_3, \cdots, X_k ≤ft( \boldsymbol{\hat{μ}}_{\mathbf{X}} = ≤ft\{ \hat{μ}_{X_2}, \hat{μ}_{X_3}, \cdots, \hat{μ}_{X_k} \right\} \right).
Estimated mean of the regressand variable ≤ft( \hat{μ}_y \right)
Vector of length p of estimated means of the regressand variable y and X_2, X_3, \cdots, X_k ≤ft( \boldsymbol{\hat{μ}} = ≤ft\{ \hat{μ}_{y}, \hat{μ}_{X_2}, \hat{μ}_{X_3}, \cdots, \hat{μ}_{X_k} \right\} \right).
k \times k matrix of estimated correlations ≤ft( \boldsymbol{\hat{R}}_{y, X_{2, 3, \cdots, k}} \right).
k \times k p-values associated with the estimated correlation matrix.
p \times p matrix of estimated correlations between regressor variables ≤ft( \boldsymbol{\hat{R}}_{X_{2, 3, \cdots, k}} \right).
Vector of length p of estimated correlations between the regressand variables and the regressor variables ≤ft( \boldsymbol{\hat{r}}_{y, X_{2, 3, \cdots, k}} = ≤ft\{ \hat{r}_{y, X_2}, \hat{r}_{y, X_3}, \cdots, \hat{r}_{y, X_k} \right\} \right).
k \times k matrix of estimated covariances ≤ft( \boldsymbol{\hat{Σ}}_{y, X_{2, 3, \cdots, k}} \right).
p \times p matrix of estimated covariances between regressor variables ≤ft( \boldsymbol{\hat{Σ}}_{X_{2, 3, \cdots, k}} \right).
Vector of length p of estimated covariances between the regressand variables and the regressor variables ≤ft( \boldsymbol{\hat{σ}}_{y, X_{2, 3, \cdots, k}} = ≤ft\{ \hat{σ}_{y, X_2}, \hat{σ}_{y, X_3}, \cdots, \hat{σ}_{y, X_k} \right\} \right).
Vector of length p of estimated variances of X_2, X_3, \cdots, X_k ≤ft( \boldsymbol{\hat{σ}}_{X_{2, 3, \cdots, k}}^{2} = ≤ft\{ \hat{σ}_{X_2}^{2}, \hat{σ}_{X_2}^{2}, \cdots \hat{σ}_{X_k}^{2} \right\} \right).
Estimated variance of y ≤ft( \hat{σ}_{y}^{2} \right).
Vector of length p of estimated standard deviation of X_2, X_3, \cdots, X_k ≤ft( \boldsymbol{\hat{σ}}_{X_{2, 3, \cdots, k}} = ≤ft\{ \hat{σ}_{X_2}, \hat{σ}_{X_2}, \cdots \hat{σ}_{X_k} \right\} \right).
Estimated standard deviation of y ≤ft( \hat{σ}_{y} \right).
Vector of length k of estimated variances of the regressand variable y and X_2, X_3, \cdots, X_k ≤ft( \boldsymbol{\hat{σ}}_{y, X_{2, 3, \cdots, k}}^{2} = ≤ft\{ \hat{σ}_{y}^{2}, \hat{σ}_{X_2}^{2}, \hat{σ}_{X_2}^{2}, \cdots \hat{σ}_{X_k}^{2} \right\} \right).
Vector of length k of estimated standard deviations of the regressand variable y and X_2, X_3, \cdots, X_k ≤ft( \boldsymbol{\hat{σ}}_{y, X_{2, 3, \cdots, k}} = ≤ft\{ \hat{σ}_{y}, \hat{σ}_{X_2}, \hat{σ}_{X_2}, \cdots \hat{σ}_{X_k} \right\} \right).
Vector of length k of estimated skewness of the regressand variable y and X_2, X_3, \cdots, X_k ≤ft( \boldsymbol{\hat{γ}}_{1} = ≤ft\{ \hat{γ}_{1y}, \hat{γ}_{1X_{2}}, \hat{γ}_{1X_{3}}, \cdots, \hat{γ}_{1X_{k}} \right\} \right) .
Vector of length k of estimated excess kurtosis of the regressand variable y and X_2, X_3, \cdots, X_k ≤ft( \boldsymbol{\hat{γ}}_{2} = ≤ft\{ \hat{γ}_{2y}, \hat{γ}_{2X_{2}}, \hat{γ}_{2X_{3}}, \cdots, \hat{γ}_{2X_{k}} \right\} \right) .
Vector is estimates of Mardia's multivariate skewness and kurtosis and their associated test statistics and p-values.
Ivan Jacob Agaloos Pesigan
1 2 3 4 5 6 7 8 9 10 11 12 13 | # Simple regression------------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
X <- X[, c(1, ncol(X))]
y <- jeksterslabRdatarepo::wages.matrix[["y"]]
out <- descriptives(X = X, y = y)
str(out)
# Multiple regression----------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
# age is removed
X <- X[, -ncol(X)]
out <- descriptives(X = X, y = y)
str(out)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.