Description Usage Arguments Details Value Author(s) See Also
Derives the slopes \boldsymbol{β}_{2, \cdots, k} of a linear regression model (\boldsymbol{β} minus the intercept) as a function of covariances.
1 |
SigmaX |
|
sigmayX |
Numeric vector of length |
X |
|
y |
Numeric vector of length |
The linear regression slopes are calculated using
\boldsymbol{β}_{2, \cdots, k} = \boldsymbol{Σ}_{\mathbf{X}}^{T} \boldsymbol{σ}_{\mathbf{y}, \mathbf{X}}
where
\boldsymbol{Σ}_{\mathbf{X}} is the p \times p covariance matrix of the regressor variables X_2, X_3, \cdots, X_k and
\boldsymbol{σ}_{\mathbf{y}, \mathbf{X}} is the p \times 1 column vector of the covariances between the regressand y variable and regressor variables X_2, X_3, \cdots, X_k
Returns the slopes \boldsymbol{β}_{2, \cdots, k} of a linear regression model derived from the variance-covariance matrix.
Ivan Jacob Agaloos Pesigan
Other parameter functions:
.intercept()
,
.slopesprime()
,
intercept()
,
sigma2epsilon()
,
slopesprime()
,
slopes()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.