dot-sehatslopeshatprimedelta: Standard Errors of Standardized Estimates of Regression...

Description Usage Arguments Details Author(s) References See Also Examples

Description

Standard Errors of Standardized Estimates of Regression Coefficients (Yuan and Chan (2011))

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
.sehatslopeshatprimedelta(
  slopeshat,
  sigma2hatepsilonhat,
  SigmaXhat,
  sigmayXhat,
  sigma2yhat,
  adjust = FALSE,
  n,
  X,
  y
)

Arguments

slopeshat

Numeric vector of length p or p by 1 matrix. p \times 1 column vector of estimated regression slopes ≤ft( \boldsymbol{\hat{β}}_{2, 3, \cdots, k} = ≤ft\{ \hat{β}_2, \hat{β}_3, \cdots, \hat{β}_k \right\}^{T} \right) .

sigma2hatepsilonhat

Numeric. Estimate of error variance.

SigmaXhat

p by p numeric matrix. p \times p matrix of estimated variances and covariances between regressor variables X_2, X_3, \cdots, X_k ≤ft( \boldsymbol{\hat{Σ}}_{\mathbf{X}} \right).

sigmayXhat

Numeric vector of length p or p by 1 matrix. p \times 1 vector of estimated covariances between the regressand y variable and regressor variables X_2, X_3, \cdots, X_k ≤ft( \boldsymbol{\hat{σ}}_{\mathbf{y}, \mathbf{X}} = ≤ft\{ \hat{σ}_{y, X_2}, \hat{σ}_{y, X_3}, \cdots, \hat{σ}_{y, X_k} \right\}^{T} \right).

sigma2yhat

Numeric. Estimated variance of the regressand ≤ft( \hat{σ}_{y}^{2} \right)

adjust

Logical. Use n - 3 adjustment for small samples.

n

Integer. Sample size.

X

n by k numeric matrix. The data matrix \mathbf{X} (also known as design matrix, model matrix or regressor matrix) is an n \times k matrix of n observations of k regressors, which includes a regressor whose value is 1 for each observation on the first column.

y

Numeric vector of length n or n by 1 matrix. The vector \mathbf{y} is an n \times 1 vector of observations on the regressand variable.

Details

The pth estimated standard error is calculated using

\mathbf{\widehat{se}}_{\boldsymbol{\hat{β}}_{\text{p}}^{\prime}} = √{ \frac{\hat{σ}_{X_{p}}^{2} \hat{c}_{p} \hat{σ}_{\hat{\varepsilon}}^{2}}{n \hat{σ}_{y}^{2}} + \frac{\hat{β}_{p}^{2} ≤ft[ \hat{σ}_{X_{p}}^{2} ≤ft( \boldsymbol{\hat{β}}^{T} \boldsymbol{\hat{Σ}}_{X} \boldsymbol{\hat{β}} \right) - \hat{σ}_{X_{p}}^{2} \hat{σ}_{\hat{\varepsilon}}^{2} - \hat{σ}_{y, X_{p}}^{2} \right]}{n \hat{σ}_{y}^{4}} }

where

Author(s)

Ivan Jacob Agaloos Pesigan

References

Yuan, K., Chan, W. (2011). Biases and Standard Errors of Standardized Regression Coefficients. Psychometrika 76, 670-690. doi:10.1007/s11336-011-9224-6.

See Also

Other standard errors of estimates of regression coefficients functions: .sehatbetahatbiased(), .sehatbetahat(), .sehatslopeshatprimetb(), sehatbetahatbiased(), sehatbetahat(), sehatslopeshatprimedelta(), sehatslopeshatprimetb()

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
slopes <- c(-3.0748755, -1.5653133, 1.0959758, 1.3703010, 0.1666065)
SigmaXhat <- matrix(
  data = c(
    0.25018672, 0.00779108, -0.01626038, -0.04424864, -0.13217068,
    0.00779108, 0.12957466, 0.01061297, -0.08818286, -0.16427222,
    -0.016260378, 0.010612975, 0.133848763, 0.004083767, 0.658462191,
    -0.044248635, -0.088182856, 0.004083767, 7.917601877, -5.910469742,
    -0.1321707, -0.1642722, 0.6584622, -5.9104697, 136.0217584
  ),
  ncol = 5
)
sigma2hatepsilonhat <- 42.35584
sigma2yhat <- 62.35235
sigmayXhat <- c(-0.8819639, -0.3633559, 0.2953811, 10.1433433, 15.9481950)
n <- 1289
.sehatslopeshatprimedelta(
  slopes = slopes, sigma2hatepsilonhat = sigma2hatepsilonhat,
  SigmaXhat = SigmaXhat, sigma2yhat = sigma2yhat, sigmayXhat = sigmayXhat, n = n
)

jeksterslabds/jeksterslabRlinreg documentation built on Jan. 7, 2021, 8:30 a.m.