Description Usage Arguments Details Author(s) References See Also Examples
Standard Errors of Standardized Estimates of Regression Coefficients (Yuan and Chan (2011))
1 2 3 4 5 6 7 8 9 10 11 | .sehatslopeshatprimedelta(
slopeshat,
sigma2hatepsilonhat,
SigmaXhat,
sigmayXhat,
sigma2yhat,
adjust = FALSE,
n,
X,
y
)
|
slopeshat |
Numeric vector of length |
sigma2hatepsilonhat |
Numeric. Estimate of error variance. |
SigmaXhat |
|
sigmayXhat |
Numeric vector of length |
sigma2yhat |
Numeric. Estimated variance of the regressand ≤ft( \hat{σ}_{y}^{2} \right) |
adjust |
Logical. Use n - 3 adjustment for small samples. |
n |
Integer. Sample size. |
X |
|
y |
Numeric vector of length |
The pth estimated standard error is calculated using
\mathbf{\widehat{se}}_{\boldsymbol{\hat{β}}_{\text{p}}^{\prime}} = √{ \frac{\hat{σ}_{X_{p}}^{2} \hat{c}_{p} \hat{σ}_{\hat{\varepsilon}}^{2}}{n \hat{σ}_{y}^{2}} + \frac{\hat{β}_{p}^{2} ≤ft[ \hat{σ}_{X_{p}}^{2} ≤ft( \boldsymbol{\hat{β}}^{T} \boldsymbol{\hat{Σ}}_{X} \boldsymbol{\hat{β}} \right) - \hat{σ}_{X_{p}}^{2} \hat{σ}_{\hat{\varepsilon}}^{2} - \hat{σ}_{y, X_{p}}^{2} \right]}{n \hat{σ}_{y}^{4}} }
where
p = ≤ft\{2, 3, \cdots, k \right\}
\hat{σ}_{\hat{\varepsilon}}^{2} is the estimated residual variance
\boldsymbol{\hat{β}}_{2, 3, \cdots, k} = ≤ft\{ \hat{β}_{2}, \hat{β}_{3}, \cdots, \hat{β}_{k}\right\}^{T} is the p \times 1 column vector of estimated regression slopes
\hat{σ}_{y}^{2} is the variance of the regressand variable y
\boldsymbol{\hat{Σ}}_{\mathbf{X}} is the p \times p estimated covariance matrix of the regressor variables X_2, X_3, \cdots, X_k
\hat{σ}_{X_p}^{2} is the variance of the corresponding pth regressor variable.
\hat{σ}_{y, X_{p}}^{2} is the covariance of the regressand variable y and the regressor variables X_2, X_3, \cdots, X_k
c_p is the diagonal element that corresponds to the regressor variable in \boldsymbol{Σ}_{\mathbf{X}}^{-1}
n is the sample size
Ivan Jacob Agaloos Pesigan
Yuan, K., Chan, W. (2011). Biases and Standard Errors of Standardized Regression Coefficients. Psychometrika 76, 670-690. doi:10.1007/s11336-011-9224-6.
Other standard errors of estimates of regression coefficients functions:
.sehatbetahatbiased()
,
.sehatbetahat()
,
.sehatslopeshatprimetb()
,
sehatbetahatbiased()
,
sehatbetahat()
,
sehatslopeshatprimedelta()
,
sehatslopeshatprimetb()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | slopes <- c(-3.0748755, -1.5653133, 1.0959758, 1.3703010, 0.1666065)
SigmaXhat <- matrix(
data = c(
0.25018672, 0.00779108, -0.01626038, -0.04424864, -0.13217068,
0.00779108, 0.12957466, 0.01061297, -0.08818286, -0.16427222,
-0.016260378, 0.010612975, 0.133848763, 0.004083767, 0.658462191,
-0.044248635, -0.088182856, 0.004083767, 7.917601877, -5.910469742,
-0.1321707, -0.1642722, 0.6584622, -5.9104697, 136.0217584
),
ncol = 5
)
sigma2hatepsilonhat <- 42.35584
sigma2yhat <- 62.35235
sigmayXhat <- c(-0.8819639, -0.3633559, 0.2953811, 10.1433433, 15.9481950)
n <- 1289
.sehatslopeshatprimedelta(
slopes = slopes, sigma2hatepsilonhat = sigma2hatepsilonhat,
SigmaXhat = SigmaXhat, sigma2yhat = sigma2yhat, sigmayXhat = sigmayXhat, n = n
)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.