slopeshat: Estimates of Regression Slopes \boldsymbol{\hat{beta}}_{2,...

Description Usage Arguments Details Value Author(s) See Also Examples

View source: R/betahat_matrix.R

Description

Estimates of Regression Slopes \boldsymbol{\hat{β}}_{2, \cdots, k}

Usage

1
slopeshat(X, y)

Arguments

X

n by k numeric matrix. The data matrix \mathbf{X} (also known as design matrix, model matrix or regressor matrix) is an n \times k matrix of n observations of k regressors, which includes a regressor whose value is 1 for each observation on the first column.

y

Numeric vector of length n or n by 1 matrix. The vector \mathbf{y} is an n \times 1 vector of observations on the regressand variable.

Details

Estimates of the linear regression slopes are calculated using

\boldsymbol{\hat{β}}_{2, \cdots, k} = \boldsymbol{\hat{Σ}}_{\mathbf{X}}^{T} \boldsymbol{\hat{σ}}_{\mathbf{y}, \mathbf{X}}

where

Value

Returns the estimated slopes \boldsymbol{\hat{β}}_{2, \cdots, k} of a linear regression model derived from the estimated variance-covariance matrix.

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other beta-hat functions: .betahatnorm(), .betahatqr(), .betahatsvd(), .intercepthat(), .slopeshatprime(), .slopeshat(), betahat(), intercepthat(), slopeshatprime()

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
# Simple regression------------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
X <- X[, c(1, ncol(X))]
y <- jeksterslabRdatarepo::wages.matrix[["y"]]
slopeshat(X = X, y = y)

# Multiple regression----------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
# age is removed
X <- X[, -ncol(X)]
slopeshat(X = X, y = y)

jeksterslabds/jeksterslabRlinreg documentation built on Jan. 7, 2021, 8:30 a.m.