linreg: Linear Regression

Description Usage Arguments Author(s) Examples

View source: R/linreg.R

Description

Linear Regression

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
linreg(
  X,
  y,
  varnamesX = NULL,
  varnamey = NULL,
  qr = TRUE,
  sehatbetahattype = "unbiased",
  sehatslopeshatprimetype = "delta",
  adjust = FALSE,
  plot = TRUE,
  print = TRUE
)

Arguments

X

n by k numeric matrix. The data matrix \mathbf{X} (also known as design matrix, model matrix or regressor matrix) is an n \times k matrix of n observations of k regressors, which includes a regressor whose value is 1 for each observation on the first column.

y

Numeric vector of length n or n by 1 matrix. The vector \mathbf{y} is an n \times 1 vector of observations on the regressand variable.

varnamesX

Optional. Character vector of length k. Variable names for matrix X.

varnamey

Optional. Character string. Variable name for vector y.

qr

Logical. If TRUE, use QR decomposition when normal equations fail. If FALSE, use singular value decompositon when normal equations fail.

sehatbetahattype

Character string. Standard errors for regression coefficients hypothesis test. Options are sehatbetahattype = "unbiased" and sehatbetahattype = "biased".

sehatslopeshatprimetype

Character string. Standard errors for standardized regression slopes hypothesis test. Options are sehatslopeshatprimetype = "textbook" and sehatslopeshatprimetype = "delta".

adjust

Logical. If sehatslopeshatprimetype = "delta" and adjust = TRUE, uses n - 3 to adjust sehatslopeshatprime for bias. This adjustment is recommended for small sample sizes.

plot

Logical. Display plots.

print

Logical. Display summary output.

Author(s)

Ivan Jacob Agaloos Pesigan

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
# Simple regression------------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
X <- X[, c(1, ncol(X))]
y <- jeksterslabRdatarepo::wages.matrix[["y"]]
linreg(X = X, y = y)

# Multiple regression----------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
# age is removed
X <- X[, -ncol(X)]
linreg(X = X, y = y)

# Multiple regression----------------------------------------------
# delta standard errors for standardized coefficients
linreg(X = X, y = y, sehatslopeshatprimetype = "delta")

jeksterslabds/jeksterslabRlinreg documentation built on Jan. 7, 2021, 8:30 a.m.