dot-vcovhatbetahat: Variance-Covariance Matrix of Estimates of Regression...

Description Usage Arguments Details Value Author(s) References See Also

Description

Calculates the variance-covariance matrix of estimates of regression coefficients using

\widehat{\mathrm{cov}} ≤ft( \boldsymbol{\hat{β}} \right) = \hat{σ}_{\varepsilon}^2 ≤ft( \mathbf{X}^{T} \mathbf{X} \right)^{-1}

where \hat{σ}_{\varepsilon}^{2} is the estimate of the error variance σ_{\varepsilon}^{2} and \mathbf{X} is the data matrix, that is, an n \times k matrix of n observations of k regressors, which includes a regressor whose value is 1 for each observation on the first column.

Usage

1

Arguments

sigma2hatepsilonhat

Numeric. Estimate of error variance.

X

n by k numeric matrix. The data matrix \mathbf{X} (also known as design matrix, model matrix or regressor matrix) is an n \times k matrix of n observations of k regressors, which includes a regressor whose value is 1 for each observation on the first column.

y

Numeric vector of length n or n by 1 matrix. The vector \mathbf{y} is an n \times 1 vector of observations on the regressand variable.

Details

If sigma2hatepsilonhat = NULL, sigma2hatepsilonhat is computed using sigma2hatepsilonhat().

Value

Returns the variance-covariance matrix of estimates of regression coefficients.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Wikipedia: Linear Regression

Wikipedia: Ordinary Least Squares

See Also

Other variance-covariance of estimates of regression coefficients functions: .vcovhatbetahatbiased(), vcovhatbetahatbiased(), vcovhatbetahat()


jeksterslabds/jeksterslabRlinreg documentation built on Jan. 7, 2021, 8:30 a.m.