Description Usage Arguments Details Value Author(s) References See Also
Calculates the variance-covariance matrix of estimates of regression coefficients using
\widehat{\mathrm{cov}} ≤ft( \boldsymbol{\hat{β}} \right) = \hat{σ}_{\varepsilon}^2 ≤ft( \mathbf{X}^{T} \mathbf{X} \right)^{-1}
where \hat{σ}_{\varepsilon}^{2} is the estimate of the error variance σ_{\varepsilon}^{2} and \mathbf{X} is the data matrix, that is, an n \times k matrix of n observations of k regressors, which includes a regressor whose value is 1 for each observation on the first column.
1 | .vcovhatbetahat(sigma2hatepsilonhat = NULL, X, y)
|
sigma2hatepsilonhat |
Numeric. Estimate of error variance. |
X |
|
y |
Numeric vector of length |
If sigma2hatepsilonhat = NULL
, sigma2hatepsilonhat
is computed
using sigma2hatepsilonhat()
.
Returns the variance-covariance matrix of estimates of regression coefficients.
Ivan Jacob Agaloos Pesigan
Wikipedia: Ordinary Least Squares
Other variance-covariance of estimates of regression coefficients functions:
.vcovhatbetahatbiased()
,
vcovhatbetahatbiased()
,
vcovhatbetahat()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.