Description Usage Arguments Value Author(s) References See Also Examples
Calculates the explained sum of squares ≤ft( \mathrm{ESS} \right) using
\mathrm{ESS} = ∑_{i = 1}^{n} ≤ft( \hat{Y}_{i} - \bar{Y} \right)^2 \\ = ∑_{i = 1}^{n} ≤ft( \hat{β}_{1} + \hat{β}_{2} X_{2i} + \hat{β}_{3} X_{3i} + … + \hat{β}_{k} X_{ki} - \bar{Y} \right)^2
In matrix form
\mathrm{ESS} = ∑_{i = 1}^{n} ≤ft( \mathbf{\hat{y}} - \mathbf{\bar{Y}} \right)^2 \\ = ∑_{i = 1}^{n} ≤ft( \mathbf{X} \boldsymbol{\hat{β}} - \mathbf{\bar{Y}} \right)^2
where \mathbf{\hat{y}} ≤ft( \mathbf{X} \boldsymbol{\hat{β}} \right) is an n \times 1 matrix of predicted values of \mathbf{y}, and \mathbf{\bar{Y}} is the mean of \mathbf{y}. Equivalent computational matrix formula
\mathrm{ESS} = \boldsymbol{\hat{β}}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\hat{β}} - n \mathbf{\bar{Y}}^{2}.
Note that
\mathrm{TSS} = \mathrm{ESS} + \mathrm{RSS} .
1 | ESS(X, y)
|
X |
|
y |
Numeric vector of length |
Returns the explained sum of squares ≤ft( \mathrm{ESS} \right).
Ivan Jacob Agaloos Pesigan
Wikipedia: Residual Sum of Squares
Wikipedia: Explained Sum of Squares
Wikipedia: Total Sum of Squares
Wikipedia: Coefficient of Determination
Other sum of squares functions:
.ESS()
,
.RSS()
,
RSS()
,
TSS()
1 2 3 4 5 6 7 8 9 10 11 | # Simple regression------------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
X <- X[, c(1, ncol(X))]
y <- jeksterslabRdatarepo::wages.matrix[["y"]]
ESS(X = X, y = y)
# Multiple regression----------------------------------------------
X <- jeksterslabRdatarepo::wages.matrix[["X"]]
# age is removed
X <- X[, -ncol(X)]
ESS(X = X, y = y)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.