#' @title Survival Random Forest SRC Learner
#' @author RaphaelS1
#' @name mlr_learners_surv.rfsrc
#'
#' @description
#' Random survival forest.
#' Calls [randomForestSRC::rfsrc()] from \CRANpkg{randomForestSRC}.
#'
#' @section Prediction types:
#' This learner returns two prediction types:
#' 1. `distr`: a survival matrix in two dimensions, where observations are
#' represented in rows and (unique event) time points in columns.
#' Calculated using the internal [randomForestSRC::predict.rfsrc()] function.
#' 2. `crank`: the expected mortality using [mlr3proba::.surv_return()].
#'
#' @template learner
#' @templateVar id surv.rfsrc
#'
#' @inheritSection mlr_learners_classif.rfsrc Custom mlr3 parameters
#'
#' @section Custom mlr3 parameters:
#' - `estimator`: Hidden parameter that controls the type of estimator used to
#' derive the survival function during prediction. The **default** value is `"chf"` which
#' uses a bootstrapped Nelson-Aalen estimator for the cumulative hazard function
#' \eqn{H(t)}, (Ishwaran, 2008) from which we calculate \eqn{S(t) = \exp(-H(t))},
#' whereas `"surv"` uses a bootstrapped Kaplan-Meier estimator to directly estimate
#' \eqn{S(t)}.
#'
#' @section Initial parameter values:
#' - `ntime`: Number of time points to coerce the observed event times for use in the
#' estimated survival function during prediction. We changed the default value
#' of `150` to `0` in order to be in line with other random survival forest
#' learners and use all the **unique event times from the train set**.
#'
#' @references
#' `r format_bib("ishwaran_2008", "breiman_2001")`
#'
#' @template seealso_learner
#' @examplesIf requireNamespace("randomForestSRC", quietly = TRUE)
#' # Define the Learner
#' learner = mlr3::lrn("surv.rfsrc", importance = "TRUE")
#' print(learner)
#'
#' # Define a Task
#' task = mlr3::tsk("grace")
#'
#' # Create train and test set
#' ids = mlr3::partition(task)
#'
#' # Train the learner on the training ids
#' learner$train(task, row_ids = ids$train)
#'
#' print(learner$model)
#' print(learner$importance())
#'
#' # Make predictions for the test rows
#' predictions = learner$predict(task, row_ids = ids$test)
#'
#' # Score the predictions
#' predictions$score()
#' @export
LearnerSurvRandomForestSRC = R6Class("LearnerSurvRandomForestSRC",
inherit = mlr3proba::LearnerSurv,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function() {
ps = ps(
ntree = p_int(default = 500L, lower = 1L, tags = "train"),
mtry = p_int(lower = 1L, tags = "train"),
mtry.ratio = p_dbl(lower = 0, upper = 1, tags = "train"),
nodesize = p_int(default = 15L, lower = 1L, tags = "train"),
nodedepth = p_int(lower = 1L, tags = "train"),
splitrule = p_fct(
levels = c("logrank", "bs.gradient", "logrankscore"),
default = "logrank", tags = "train"),
nsplit = p_int(lower = 0, default = 10, tags = "train"),
importance = p_fct(
default = "FALSE",
levels = c("FALSE", "TRUE", "none", "permute", "random", "anti"),
tags = c("train", "predict")),
block.size = p_int(default = 10L, lower = 1L, tags = c("train", "predict")),
bootstrap = p_fct(
default = "by.root",
levels = c("by.root", "by.node", "none", "by.user"), tags = "train"),
samptype = p_fct(
default = "swor", levels = c("swor", "swr"),
tags = "train"),
samp = p_uty(tags = "train"),
membership = p_lgl(default = FALSE, tags = c("train", "predict")),
sampsize = p_uty(tags = "train"),
sampsize.ratio = p_dbl(0, 1, tags = "train"),
na.action = p_fct(
default = "na.omit", levels = c("na.omit", "na.impute"),
tags = c("train", "predict")),
nimpute = p_int(lower = 1L, default = 1L, special_vals = list(NULL), tags = "train"),
ntime = p_int(lower = 0L, default = 150L, special_vals = list(NULL), tags = "train"),
cause = p_int(lower = 1L, tags = "train"),
proximity = p_fct(
default = "FALSE",
levels = c("FALSE", "TRUE", "inbag", "oob", "all"),
tags = c("train", "predict")),
distance = p_fct(
default = "FALSE",
levels = c("FALSE", "TRUE", "inbag", "oob", "all"),
tags = c("train", "predict")),
forest.wt = p_fct(
default = "FALSE",
levels = c("FALSE", "TRUE", "inbag", "oob", "all"),
tags = c("train", "predict")),
xvar.wt = p_uty(tags = "train"),
split.wt = p_uty(tags = "train"),
forest = p_lgl(default = TRUE, tags = "train"),
var.used = p_fct(
default = "FALSE",
levels = c("FALSE", "all.trees", "by.tree"), tags = c("train", "predict")),
split.depth = p_fct(
default = "FALSE",
levels = c("FALSE", "all.trees", "by.tree"), tags = c("train", "predict")),
seed = p_int(upper = -1L, tags = c("train", "predict")),
do.trace = p_lgl(default = FALSE, tags = c("train", "predict")),
statistics = p_lgl(default = FALSE, tags = c("train", "predict")),
get.tree = p_uty(tags = "predict"),
outcome = p_fct(
default = "train", levels = c("train", "test"),
tags = "predict"),
ptn.count = p_int(default = 0L, lower = 0L, tags = "predict"),
estimator = p_fct(default = "nelson", levels = c("nelson", "kaplan"),
tags = "predict"),
cores = p_int(default = 1L, lower = 1L, tags = c("train", "predict", "threads")),
save.memory = p_lgl(default = FALSE, tags = "train"),
perf.type = p_fct(levels = "none", tags = "train"),
case.depth = p_lgl(default = FALSE, tags = c("train", "predict")),
marginal.xvar = p_uty(default = NULL, tags = "predict")
)
ps$values$ntime = 0
super$initialize(
id = "surv.rfsrc",
packages = c("mlr3extralearners", "randomForestSRC", "pracma"),
feature_types = c("logical", "integer", "numeric", "factor"),
predict_types = c("crank", "distr"),
param_set = ps,
# selected features is possible but there's a bug somewhere in rfsrc so that the model
# can be trained but not predicted. so public method retained but property not included
properties = c("weights", "missings", "importance", "oob_error"),
man = "mlr3extralearners::mlr_learners_surv.rfsrc",
label = "Random Forest"
)
},
#' @description
#' The importance scores are extracted from the model slot `importance`.
#' @return Named `numeric()`.
importance = function() {
if (is.null(self$model$importance) & !is.null(self$model)) {
stopf("Set 'importance' to one of: {'TRUE', 'permute', 'random', 'anti'}.")
}
sort(self$model$importance, decreasing = TRUE)
},
#' @description
#' Selected features are extracted from the model slot `var.used`.
#' @return `character()`.
selected_features = function() {
if (is.null(self$model$var.used) & !is.null(self$model)) {
stopf("Set 'var.used' to one of: {'all.trees', 'by.tree'}.")
}
self$model$var.used
},
#' @description
#' OOB error extracted from the model slot `err.rate`.
#' @return `numeric()`.
oob_error = function() {
self$model$err.rate[self$model$ntree]
}
),
private = list(
.train = function(task) {
pv = self$param_set$get_values(tags = "train")
pv = convert_ratio(pv, "mtry", "mtry.ratio", length(task$feature_names))
pv = convert_ratio(pv, "sampsize", "sampsize.ratio", task$nrow)
cores = pv$cores %??% 1L
pv$cores = NULL
pv$case.wt = private$.get_weights(task) # nolint
invoke(randomForestSRC::rfsrc,
formula = task$formula(), data = task$data(),
.args = pv, .opts = list(rf.cores = cores))
},
.predict = function(task) {
newdata = ordered_features(task, self)
pars_predict = self$param_set$get_values(tags = "predict")
# default estimator is nelson, hence nelson selected if NULL
estimator = pars_predict$estimator %??% "nelson"
pars_predict$estimator = NULL
pars_predict$var.used = "FALSE"
cores = pars_predict$cores %??% 1L # additionaly implemented by author
pars_predict$cores = NULL
p = invoke(predict, object = self$model, newdata = newdata, .args = pars_predict,
.opts = list(rf.cores = cores))
# rfsrc uses Nelson-Aalen in chf and Kaplan-Meier for survival, as these
# don't give equivalent results one must be chosen and the relevant functions are transformed
# as required.
surv = if (estimator == "nelson") exp(-p$chf) else p$survival
mlr3proba::.surv_return(times = self$model$time.interest, surv = surv)
}
)
)
.extralrns_dict$add("surv.rfsrc", LearnerSurvRandomForestSRC)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.