R/bm_PlotResponseCurves.R

Defines functions .as_ggdat .bm_PlotResponseCurves.check.args bm_PlotResponseCurves

Documented in bm_PlotResponseCurves

###################################################################################################
##' @name bm_PlotResponseCurves
##' @author Damien Georges, Maya Gueguen
##' 
##' @title Plot response curves
##' 
##' @description This function represents response curves of species distribution models, from 
##' \code{\link{BIOMOD.models.out}} or \code{\link{BIOMOD.ensemble.models.out}} objects that can 
##' be obtained from \code{\link{BIOMOD_Modeling}} or \code{\link{BIOMOD_EnsembleModeling}} 
##' functions. Response curves can be represented in either 2 or 3 dimensions (meaning 1 or 2 
##' explanatory variables at a time, see Details).
##' 
##'   
##' @param bm.out a \code{\link{BIOMOD.models.out}} or \code{\link{BIOMOD.ensemble.models.out}} 
##' object that can be obtained with the \code{\link{BIOMOD_Modeling}} or 
##' \code{\link{BIOMOD_EnsembleModeling}} functions
##' @param models.chosen a \code{vector} containing model names to be kept, must be either 
##' \code{all} or a sub-selection of model names that can be obtained with the 
##' \code{\link{get_built_models}} function
##' @param new.env a \code{matrix}, \code{data.frame} or 
##' \code{\link[terra:rast]{SpatRaster}} object containing the new explanatory
##'  variables (in columns or layers, with names matching the variables names
##'  given to the \code{\link{BIOMOD_FormatingData}} function to build
##'  \code{bm.out}) that will be used to project the species distribution model(s)
##' \cr \emph{Note that old format from \pkg{raster} are still supported such as 
##' \code{RasterStack} objects. }
##' 
##' @param show.variables a \code{vector} containing the names of the explanatory variables 
##' present into \code{new.env} parameter and to be plotted
##' @param do.bivariate (\emph{optional, default} \code{FALSE}) \cr 
##' A \code{logical} value defining whether the response curves are to be represented in 3 
##' dimensions (meaning 2 explanatory variables at a time) or not (meaning only 1)
##' @param fixed.var a \code{character} corresponding to the statistic to be used to fix as 
##' constant the remaining variables other than the one used to predict response, must be either 
##' \code{mean}, \code{median}, \code{min}, \code{max}
##' @param do.plot (\emph{optional, default} \code{TRUE}) \cr 
##' A \code{logical} value defining whether the plot is to be rendered or not
##' @param do.progress (\emph{optional, default} \code{TRUE}) \cr 
##' A \code{logical} value defining whether the progress bar is to be rendered or not
##' @param \ldots some additional arguments (see Details)
##' 
##' 
##' @return  
##' 
##' A \code{list} containing a \code{data.frame} with variables and predicted values and the 
##' corresponding \code{ggplot} object representing response curves.
##' 
##' 
##' @details
##' 
##' This function is an adaptation of the Evaluation Strip method proposed by Elith et al. (2005). 
##' To build the predicted response curves :
##' \itemize{
##'   \item \code{n-1} variables are set constant to a fixed value determined by the 
##'   \code{fixed.var} parameter (in the case of categorical variable, the most represented 
##'   class is taken)
##'   \item the remaining variable is made to vary throughout its range given by the \code{new.env} 
##'   parameter 
##'   \item predicted values are computed with these \code{n-1} fixed variables, and this 
##'   studied variable varying 
##' }
##' If \code{do.bivariate = TRUE}, 2 variables are varying at the same time. \cr \cr
##' 
##' The response curves obtained show the sensibility of the model to the studied variable. \cr 
##' Note that this method does not account for interactions between variables. \cr \cr
##' 
##' \code{...} can take the following values :
##' 
##' \itemize{
##'   \item \code{main} : a \code{character} corresponding to the graphic title
##' }
##' 
##' 
##' @references
##' 
##' \itemize{
##'   \item Elith, J., Ferrier, S., Huettmann, FALSE. and Leathwick, J. R. 2005. The evaluation 
##'   strip: A new and robust method for plotting predicted responses from species distribution 
##'   models. \emph{Ecological Modelling}, \bold{186}, 280-289.
##' }
##' 
##' 
##' @keywords ggplot response curve
##' 
##' 
##' @seealso \code{\link{BIOMOD.models.out}}, \code{\link{BIOMOD.ensemble.models.out}}, 
##' \code{\link{BIOMOD_Modeling}}, \code{\link{BIOMOD_EnsembleModeling}}
##' @family Secundary functions
##' @family Plot functions
##' 
##' 
##' @examples
##' library(terra)
##' 
##' # Load species occurrences (6 species available)
##' data(DataSpecies)
##' head(DataSpecies)
##' 
##' # Select the name of the studied species
##' myRespName <- 'GuloGulo'
##' 
##' # Get corresponding presence/absence data
##' myResp <- as.numeric(DataSpecies[, myRespName])
##' 
##' # Get corresponding XY coordinates
##' myRespXY <- DataSpecies[, c('X_WGS84', 'Y_WGS84')]
##' 
##' # Load environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
##' data(bioclim_current)
##' myExpl <- terra::rast(bioclim_current)
##' 
##' \dontshow{
##' myExtent <- terra::ext(0,30,45,70)
##' myExpl <- terra::crop(myExpl, myExtent)
##' }
##' 
##' # ---------------------------------------------------------------#
##' file.out <- paste0(myRespName, "/", myRespName, ".AllModels.models.out")
##' if (file.exists(file.out)) {
##'   myBiomodModelOut <- get(load(file.out))
##' } else {
##' 
##'   # Format Data with true absences
##'   myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
##'                                        expl.var = myExpl,
##'                                        resp.xy = myRespXY,
##'                                        resp.name = myRespName)
##' 
##'   # Model single models
##'   myBiomodModelOut <- BIOMOD_Modeling(bm.format = myBiomodData,
##'                                       modeling.id = 'AllModels',
##'                                       models = c('RF', 'GLM'),
##'                                       CV.strategy = 'random',
##'                                       CV.nb.rep = 2,
##'                                       CV.perc = 0.8,
##'                                       OPT.strategy = 'bigboss',
##'                                       metric.eval = c('TSS','ROC'),
##'                                       var.import = 3,
##'                                       seed.val = 42)
##' }
##' 
##' 
##' # ---------------------------------------------------------------#
##' # Represent response curves
##' mods <- get_built_models(myBiomodModelOut, run = 'RUN1')
##' bm_PlotResponseCurves(bm.out = myBiomodModelOut, 
##'                       models.chosen = mods,
##'                       fixed.var = 'median')
##' ## fixed.var can also be set to 'min', 'max' or 'mean'
##' # bm_PlotResponseCurves(bm.out = myBiomodModelOut, 
##' #                       models.chosen = mods,
##' #                       fixed.var = 'min')
##' 
##' # Bivariate case (one model)
##' # variables can be selected with argument 'show.variables'
##' # models can be selected with argument 'models.chosen'
##' mods <- get_built_models(myBiomodModelOut, full.name = 'GuloGulo_allData_RUN2_RF')
##' bm_PlotResponseCurves(bm.out = myBiomodModelOut, 
##'                       show.variables = c("bio4","bio12","bio11"),
##'                       models.chosen = mods,
##'                       fixed.var = 'median',
##'                       do.bivariate = TRUE)
##'                                       
##'                                       
##' @importFrom terra rast cats global is.factor nlyr                                    
##' @importFrom foreach foreach %do% %:%
##' @importFrom reshape2 melt
##' @importFrom ggplot2 ggplot aes_string geom_line geom_rug geom_raster facet_wrap xlab ylab labs 
##' theme element_blank element_rect element_text scale_fill_viridis_c
##' 
##' @export
##' 
##' 
###################################################################################################

bm_PlotResponseCurves <- function(bm.out
                                  , models.chosen = 'all'
                                  , new.env = get_formal_data(bm.out, 'expl.var')
                                  , show.variables = get_formal_data(bm.out, 'expl.var.names')
                                  , fixed.var = 'mean'
                                  , do.bivariate = FALSE
                                  , do.plot = TRUE
                                  , do.progress = TRUE
                                  , ...)
{
  ## 0. Check arguments ---------------------------------------------------------------------------
  formal_names <- models.chosen
  
  args <- .bm_PlotResponseCurves.check.args(bm.out, models.chosen, new.env, show.variables, do.bivariate, ...)
  for (argi in names(args)) { assign(x = argi, value = args[[argi]]) }
  rm(args)

  ## 1. Create output object ----------------------------------------------------------------------
  ref_table <- new.env[1, , drop = FALSE]
  rownames(ref_table) <- NULL
  for (i in 1:ncol(new.env)) {
    if (is.numeric(new.env[, i])) {
      ref_table[, i] <- switch(fixed.var,
                               mean = mean(new.env[data_species == 1, i]),
                               median = median(new.env[data_species == 1, i]),
                               min = min(new.env[data_species == 1, i]),
                               max = max(new.env[data_species == 1, i]))
    } else { # return everytime the majoritary class
      sum_level <- summary(new.env[data_species == 1, i], na.rm = TRUE)
      ref_table[, i] <- names(sum_level)[which.max(sum_level)]
    }
  }
  
  factor_id <- which(sapply(new.env, is.factor))
  
  ## 3. Fill the PLOT object ----------------------------------------------------------------------
  if (!do.bivariate)
  {
    ## NON-BIVARIATE CASE -------------------------------------------------------------------------
    
    if (do.progress) {
      PROGRESS = txtProgressBar(min = 0, max = length(show.variables) * length(models), style = 3)
      i.iter = 0
    }
    
    list.out = foreach(vari = show.variables) %do%
      {
        if (is.factor(new.env[, vari])) {
          pts.tmp <- as.factor(levels(new.env[, vari]))
        } else {
          pts.tmp <- seq(min(new.env[, vari], na.rm = TRUE), max(new.env[, vari], na.rm = TRUE), length.out = nb.pts)
        }
        ## Creating tmp data --------------------------------------------------
        tmp = ref_table[, -which(colnames(ref_table) == vari), drop = FALSE]
        new.env.r.tmp <- eval(parse(text = paste0("cbind(", vari, "= pts.tmp, tmp)")))
        new.env.r.tmp <- new.env.r.tmp[, colnames(ref_table), drop = FALSE]
        if (length(factor_id) > 0) {
          for (f in factor_id) {
            new.env.r.tmp[, f] <- factor(as.character(new.env.r.tmp[, f]),
                                         levels = levels(new.env[, f]))
          }
        }
        
        ## Load models ------------------------------------------------------------------
        BIOMOD_LoadModels(bm.out = bm.out, full.name = models)

        ## Getting predictions for each model -------------------------------------------
        tab.out = foreach(model = models, .combine = "cbind") %do% 
          {
            mod <- get(model)
            mod.name <- ifelse(use.formal.names, formal_names[which(is.element(models, model))], model)
            
            temp_workdir = NULL
            if (inherits(mod, "MAXENT_biomod2_model")) {
              temp_workdir = mod@model_output_dir
            }
            proj.tmp <- predict(mod, newdata = new.env.r.tmp, on_0_1000 = on_0_1000, do_check = FALSE, temp_workdir = temp_workdir, seedval = NULL)
            
            res = data.frame(pts.tmp, proj.tmp)
            colnames(res) = c(vari, mod.name)
            
            if (do.progress) {
              i.iter <- i.iter + 1
              setTxtProgressBar(pb = PROGRESS, value = i.iter)
            }
            return(res)
          }
        tab.out = tab.out[, c(vari, models)]
        return(tab.out)
      }
    if (do.progress) { close(PROGRESS) }
    
  } else {
    ## BIVARIATE CASE -----------------------------------------------------------------------------
    
    if (do.progress) {
      PROGRESS = txtProgressBar(min = 0, max = ncol(combn(show.variables, 2)) * length(models), style = 3)
      i.iter = 0
    }
    
    list.out = foreach(vari1 = show.variables[-length(show.variables)], .combine = "c") %:%
      foreach(vari2 = show.variables[-(1:which(show.variables == vari1))]) %do%
      {
        pts.tmp1 <- rep(seq(min(new.env[, vari1], na.rm = TRUE), max(new.env[, vari1], na.rm = TRUE)
                            , length.out = sqrt(nb.pts)), each = sqrt(nb.pts))
        pts.tmp2 <- rep(seq(min(new.env[, vari2], na.rm = TRUE), max(new.env[, vari2], na.rm = TRUE)
                            , length.out = sqrt(nb.pts)), sqrt(nb.pts))
        
        ## Creating tmp data ------------------------------------------------------------
        tmp = ref_table[, -which(colnames(ref_table) %in% c(vari1, vari2)), drop = FALSE]
        new.env.r.tmp <- eval(parse(text = paste0("cbind(", vari1," = pts.tmp1, ", vari2, " = pts.tmp2, tmp)")))
        new.env.r.tmp <- new.env.r.tmp[, colnames(ref_table), drop = FALSE]
        if (length(factor_id)) {
          for (f in factor_id) {
            new.env.r.tmp[, f] <- factor(as.character(new.env.r.tmp[, f]), levels = levels(new.env[, f]))
          }
        }
        
        ## Load models ------------------------------------------------------------------
        BIOMOD_LoadModels(bm.out = bm.out, full.name = models)
        
        ## Getting predictions for each model -------------------------------------------
        tab.out = foreach(model = models, .combine = "cbind") %do% 
          {
            mod <- get(model)
            mod.name <- ifelse(use.formal.names, formal_names[which(is.element(models, model))], model)
            
            temp_workdir = NULL
            if (length(grep("MAXENT$", mod.name)) == 1) {
              temp_workdir = mod@model_output_dir
            }
            
            proj.tmp <- predict(mod, newdata = new.env.r.tmp, on_0_1000 = on_0_1000, do_check = FALSE, temp_workdir = temp_workdir, seedval = NULL)
            
            res = data.frame(pts.tmp1, pts.tmp2, proj.tmp)
            colnames(res) = c(vari1, vari2, mod.name)
            
            if (do.progress) {
              i.iter <- i.iter + 1
              setTxtProgressBar(pb = PROGRESS, value = i.iter)
            }
            return(res)
          }
        tab.out = tab.out[, c(vari1, vari2, models)]
        return(tab.out)
      }
    if (do.progress) { close(PROGRESS) }
  }
  # transform list.out into ggplot friendly shape
  ggdat <- .as_ggdat(list.out, do.bivariate)
  
  ## 2. PLOT graphic --------------------------------------------------------------------
  if (!do.bivariate) {
    new.env_m <- melt(new.env[, show.variables], variable.name = "expl.name", value.name = "expl.val")
    gg <- ggplot(ggdat, aes_string(x = "expl.val", y = "pred.val", color = "pred.name")) +
      geom_line() +
      geom_rug(data = new.env_m, sides = 'b', inherit.aes = FALSE, aes_string(x = "expl.val")) +
      facet_wrap("expl.name", scales = "free_x") +
      xlab("") +
      ylab("") +
      theme(legend.title = element_blank()
            , legend.key = element_rect(fill = "white")
            , legend.position = "bottom"
            , axis.text.x = element_text(angle = 45, hjust = 1))
  } else {
    comb.names = sort(unique(ggdat$comb))
    list.ggdat = foreach(combi = comb.names) %do%
      {
        vari1 = strsplit(combi, "[+]")[[1]][1]
        vari2 = strsplit(combi, "[+]")[[1]][2]
        tmp = ggdat[which(ggdat$comb == combi), ]
        tmp1 = tmp[which(tmp$expl.name == vari1), c("id", "expl.val", "pred.name", "pred.val", "comb")]
        colnames(tmp1)[which(colnames(tmp1) == "expl.val")] = vari1
        tmp2 = tmp[which(tmp$expl.name == vari2), c("id", "expl.val", "pred.name", "pred.val", "comb")]
        colnames(tmp2)[which(colnames(tmp2) == "expl.val")] = vari2
        tmp = merge(tmp1, tmp2, by = c("id", "pred.name", "pred.val", "comb"))
        return(tmp)
      }
    names(list.ggdat) = comb.names
    
    gg <- ggplot(ggdat, aes_string(fill = "pred.val"))
    for (ii in 1:length(list.ggdat)) {
      combi = names(list.ggdat)[ii]
      vari1 = strsplit(combi, "[+]")[[1]][1]
      vari2 = strsplit(combi, "[+]")[[1]][2]
      gg <- gg +
        geom_raster(data = list.ggdat[[ii]], aes_string(x = vari1, y = vari2))
    }
    gg <- gg +
      facet_wrap("pred.name ~ sub('[+]', ' [ x - y ] ', comb)", scales = "free") +
      xlab("") +
      ylab("") +
      scale_fill_viridis_c("Probability") +
      theme(legend.key = element_rect(fill = "white")
            , legend.position = "bottom"
            , axis.text.x = element_text(angle = 45, hjust = 1))
  }
  
  if (length(main) > 0) { ## add title
    gg <- gg + labs(title = main)
  }
  
  if (do.plot){ print(gg) }
  return(list(tab = ggdat, plot = invisible(gg)))
}


# Argument check ---------------------------------------------------------------

.bm_PlotResponseCurves.check.args <- function(bm.out, models.chosen, new.env, show.variables, do.bivariate, ...)
{
  args <- list(...)
  
  ## 1. Check bm.out argument -------------------------------------------------
  .fun_testIfInherits(TRUE, "bm.out", bm.out, c("BIOMOD.models.out", "BIOMOD.ensemble.models.out"))
  
  ## 2. Check models.chosen ---------------------------------------------------
  if (models.chosen[1] == 'all') {
    if (inherits(bm.out, "BIOMOD.models.out")) {
      models.chosen <- bm.out@models.computed
    } else if (inherits(bm.out, "BIOMOD.ensemble.models.out")) {
      models.chosen <- bm.out@em.computed
    } 
  } else {
    if (inherits(bm.out, "BIOMOD.models.out")) {
      models.chosen <- intersect(models.chosen, bm.out@models.computed)
    } else if (inherits(bm.out, "BIOMOD.ensemble.models.out")) {
      models.chosen <- intersect(models.chosen, bm.out@em.computed)
    } 
  }
  if (length(models.chosen) < 1) {
    stop('No models selected')
  }
  models <- models.chosen
  
  ## check that given models exist
  files.check <- file.path(bm.out@dir.name, bm.out@sp.name, 'models', bm.out@modeling.id, models.chosen)
  not.checked.files <- grep('MAXENT|SRE', files.check)
  if (length(not.checked.files) > 0) {
    files.check <- files.check[-not.checked.files]
  }
  missing.files <- files.check[!file.exists(files.check)]
  if (length(missing.files) > 0) {
    stop(paste0("Projection files missing : ", toString(missing.files)))
    if (length(missing.files) == length(files.check)) {
      stop("Impossible to find any models, might be a problem of working directory")
    }
  }
  
  ## 2. Check args$nb.pts argument --------------------------------------------
  ## defining the number split in each variables range
  nb.pts <- args$nb.pts
  if (!is.null(nb.pts) && do.bivariate == TRUE) {
    nb.pts <- nb.pts ^ 2
  } else if (is.null(nb.pts) && do.bivariate == FALSE) {
    nb.pts <- 100
  } else if (is.null(nb.pts) && do.bivariate == TRUE) {
    nb.pts <- 25 ^ 2
  }
  
  ## 3. Check new.env argument ------------------------------------------------

  .fun_testIfInherits(TRUE, "new.env", new.env, 
                      c("SpatRaster","Raster","data.frame","matrix"))
  
  if(inherits(new.env, "matrix")){
    if(any(sapply(get_formal_data(bm.out, "expl.var"), is.factor))){
      stop("new.env cannot be given as matrix when original model have factor variables")
    }
    new.env <- as.data.frame(new.env)
  }
  
  if (inherits(new.env, c("Raster"))) {
    categorical_var <- which(raster::is.factor(new.env))
    if (length(categorical_var) > 0) {
      new.env = .categorical_stack_to_terra(new.env)
    } else {
      new.env <- rast(new.env)
    }
  }

  if (inherits(new.env, c("SpatRaster"))) {
    cat("\n   > Extracting raster infos..")
    DataTmp <- matrix(0, ncol = nlyr(new.env), nrow = nb.pts)
    colnames(DataTmp) <- names(new.env)
    maxVal <- global(new.env, max, na.rm = TRUE)$max
    minVal <- global(new.env, min, na.rm = TRUE)$min

    DataTmp <- as.data.frame(DataTmp)
    for (i in 1:ncol(DataTmp)) {
      DataTmp[, i] <- seq(minVal[i], maxVal[i], length.out = nb.pts)
    }
    
    categorical_var <- which(is.factor(new.env))
    if (length(categorical_var) > 0) {
      for(thisvar in categorical_var){
        DataTmp[, thisvar] <- rep(factor(
          cats(new.env[[categorical_var]])[[1]][,2]
          ), length.out = nrow(DataTmp))
      }
    }
    new.env <- data.frame(DataTmp)
  }
  
  ## 4. Check show.variables argument -----------------------------------------
  if (length(show.variables) > ncol(new.env) || 
      any(!show.variables %in% colnames(new.env))) {
    stop("columns wanted in show.variables do not match the data \n")
  }
  
  # remove factorial var in do.bivariate case
  if (do.bivariate == TRUE) {
    fact_var <- sapply(new.env[, show.variables, drop = FALSE], is.factor)
    if (sum(fact_var) > 0) {
      warning("Factorial variables have been automatically removed!")
      show.variables <- show.variables[!fact_var]
    }
  }
  
  ## 5. Check main argument ---------------------------------------------------
  main <- args$main
  if (is.null(main)) { main <- try(paste0("Response curves for ", bm.out@sp.name, "'s models")) }
  
  ## 6. Check data_species argument -------------------------------------------
  data_species <- args$data_species
  if (is.null(data_species)) {
    data_species <- rep(1, nrow(new.env))
  } else {
    data_species[data_species != 1 | is.na(data_species)] <- 0
  }
  
  return(list(models = models,
              new.env = new.env,
              show.variables = show.variables,
              do.bivariate = do.bivariate,
              nb.pts = nb.pts,
              on_0_1000 = ifelse(is.null(args$on_0_1000), FALSE, args$on_0_1000),
              use.formal.names = ifelse(is.null(args$use.formal.names), FALSE, args$use.formal.names),
              main = main,
              data_species = data_species))
}


# Tools -----------------------------------------------------------------------

.as_ggdat <- function(list.dat, do.bivariate)
{
  col.expl = c(1, 2)
  if (!do.bivariate) { col.expl = c(1) }
  out_ <- foreach(dat_ = list.dat, .combine = "rbind") %do%
    {
      dat_$id <- as.numeric(rownames(dat_))
      if (do.bivariate) {
        dat_$comb <- paste0(colnames(dat_)[col.expl], collapse = "+")
      }
      id.col = which(colnames(dat_) == "id")
      id.vec = unlist(ifelse(do.bivariate, list(c("id", "comb")), "id"))
      expl.dat_ = melt(dat_[, c(col.expl, id.col)], 
                       id.vars = "id", 
                       variable.name = "expl.name", 
                       value.name = "expl.val",
                       factorsAsStrings = FALSE)
      expl.dat_$expl.val = as.numeric(expl.dat_$expl.val) ## should not work with factorial variable other than number
      pred.dat_ = melt(dat_[, -col.expl], id.vars = id.vec, variable.name = "pred.name", value.name = "pred.val")
      out.dat_ = merge(expl.dat_, pred.dat_, by = "id")
      return(out.dat_)
    }
  return(out_)
}

Try the biomod2 package in your browser

Any scripts or data that you put into this service are public.

biomod2 documentation built on June 22, 2024, 10:56 a.m.