Nothing
#' Meta-analysis of binary outcome data
#'
#' @description
#' Calculation of common effect and random effects estimates (risk
#' ratio, odds ratio, risk difference, arcsine difference, or
#' diagnostic odds ratio) for meta-analyses with binary outcome
#' data. Mantel-Haenszel, inverse variance, Peto method, generalised
#' linear mixed model (GLMM), logistic regression with penalised likelihood
#' and sample size method are available for pooling. For GLMMs,
#' the \code{\link[metafor]{rma.glmm}} function from R package \bold{metafor}
#' (Viechtbauer, 2010) is called internally. For penalised logistic regression,
#' R package \bold{brglm2} must be available.
#'
#' @param event.e Number of events in experimental group, or true
#' positives in diagnostic study, or an R object
#' created with \code{\link{pairwise}}.
#' @param n.e Number of observations in experimental group or number
#' of ill participants in diagnostic study.
#' @param event.c Number of events in control group or false positives
#' in diagnostic study.
#' @param n.c Number of observations in control group or number of
#' healthy participants in diagnostic study.
#' @param studlab An optional vector with study labels.
#' @param data An optional data frame containing the study
#' information, i.e., event.e, n.e, event.c, and n.c.
#' @param subset An optional vector specifying a subset of studies to
#' be used.
#' @param exclude An optional vector specifying studies to exclude
#' from meta-analysis, however, to include in printouts and forest
#' plots.
#' @param cluster An optional vector specifying which estimates come
#' from the same cluster resulting in the use of a three-level
#' meta-analysis model.
#' @param rho Assumed correlation of estimates within a cluster.
#' @param method A character string indicating which method is to be
#' used for pooling of studies. One of \code{"Inverse"},
#' \code{"MH"}, \code{"Peto"}, \code{"GLMM"}, \code{"LRP"}, or \code{"SSW"},
#' can be abbreviated.
#' @param sm A character string indicating which summary measure
#' (\code{"RR"}, \code{"OR"}, \code{"RD"}, \code{"ASD"},
#' \code{"DOR"}, or \code{"VE"}) is to be used for pooling of
#' studies, see Details.
#' @param incr Could be either a numerical value which is added to
#' cell frequencies for studies with a zero cell count or the
#' character string \code{"TACC"} which stands for treatment arm
#' continuity correction, see Details.
#' @param method.incr A character string indicating which continuity
#' correction method should be used (\code{"only0"},
#' \code{"if0all"}, or \code{"all"}), see Details.
#' @param allstudies A logical indicating if studies with zero or all
#' events in both groups are to be included in the meta-analysis
#' (applies only if \code{sm} is equal to \code{"RR"}, \code{"OR"},
#' or \code{"DOR"}).
#' @param MH.exact A logical indicating if \code{incr} is not to be
#' added to cell frequencies for studies with a zero cell count to
#' calculate the pooled estimate based on the Mantel-Haenszel
#' method.
#' @param RR.Cochrane A logical indicating if 2*\code{incr} instead of
#' 1*\code{incr} is to be added to \code{n.e} and \code{n.c} in the
#' calculation of the risk ratio (i.e., \code{sm="RR"}) for studies
#' with a zero cell. This is used in RevMan 5, the program for
#' preparing and maintaining Cochrane reviews.
#' @param Q.Cochrane A logical indicating if the Mantel-Haenszel
#' estimate is used in the calculation of the heterogeneity
#' statistic Q which is implemented in RevMan 5, the program for
#' preparing and maintaining Cochrane reviews.
#' @param model.glmm A character string indicating which GLMM should
#' be used. One of \code{"UM.FS"}, \code{"UM.RS"}, \code{"CM.EL"},
#' and \code{"CM.AL"}, see Details.
#' @param level The level used to calculate confidence intervals for
#' individual studies.
#' @param common A logical indicating whether a common effect
#' meta-analysis should be conducted.
#' @param random A logical indicating whether a random effects
#' meta-analysis should be conducted.
#' @param overall A logical indicating whether overall summaries
#' should be reported. This argument is useful in a meta-analysis
#' with subgroups if overall results should not be reported.
#' @param overall.hetstat A logical value indicating whether to print
#' heterogeneity measures for overall treatment comparisons. This
#' argument is useful in a meta-analysis with subgroups if
#' heterogeneity statistics should only be printed on subgroup
#' level.
#' @param prediction A logical indicating whether a prediction
#' interval should be printed.
#' @param method.tau A character string indicating which method is
#' used to estimate the between-study variance \eqn{\tau^2} and its
#' square root \eqn{\tau} (see \code{\link{meta-package}}).
#' @param method.tau.ci A character string indicating which method is
#' used to estimate the confidence interval of \eqn{\tau^2} and
#' \eqn{\tau} (see \code{\link{meta-package}}).
#' @param level.hetstat The level used to calculate confidence intervals
#' for heterogeneity statistics.
#' @param tau.preset Prespecified value for the square root of the
#' between-study variance \eqn{\tau^2}.
#' @param TE.tau Overall treatment effect used to estimate the
#' between-study variance tau-squared.
#' @param tau.common A logical indicating whether tau-squared should
#' be the same across subgroups.
#' @param method.I2 A character string indicating which method is
#' used to estimate the heterogeneity statistic I\eqn{^2}. Either
#' \code{"Q"} or \code{"tau2"}, can be abbreviated
#' (see \code{\link{meta-package}}).
#' @param level.ma The level used to calculate confidence intervals
#' for meta-analysis estimates.
#' @param method.random.ci A character string indicating which method
#' is used to calculate confidence interval and test statistic for
#' random effects estimate (see \code{\link{meta-package}}).
#' @param adhoc.hakn.ci A character string indicating whether an
#' \emph{ad hoc} variance correction should be applied in the case
#' of an arbitrarily small Hartung-Knapp variance estimate (see
#' \code{\link{meta-package}}).
#' @param level.predict The level used to calculate prediction
#' interval for a new study.
#' @param method.predict A character string indicating which method is
#' used to calculate a prediction interval (see
#' \code{\link{meta-package}}).
#' @param adhoc.hakn.pi A character string indicating whether an
#' \emph{ad hoc} variance correction should be applied for
#' prediction interval (see \code{\link{meta-package}}).
#' @param seed.predict A numeric value used as seed to calculate
#' bootstrap prediction interval (see \code{\link{meta-package}}).
#' @param method.bias A character string indicating which test for
#' funnel plot asymmetry is to be used. Either \code{"Begg"},
#' \code{"Egger"}, \code{"Thompson"}, \code{"Schwarzer"},
#' \code{"Harbord"}, \code{"Peters"}, or \code{"Deeks"}, can be
#' abbreviated. See function \code{\link{metabias}.}
#' @param backtransf A logical indicating whether results for odds
#' ratio (\code{sm="OR"}), risk ratio (\code{sm="RR"}), or
#' diagnostic odds ratio (\code{sm="DOR"}) should be back
#' transformed in printouts and plots. If TRUE (default), results
#' will be presented as odds ratios and risk ratios; otherwise log
#' odds ratios and log risk ratios will be shown.
#' @param pscale A numeric defining a scaling factor for printing of
#' risk differences.
#' @param text.common A character string used in printouts and forest
#' plot to label the pooled common effect estimate.
#' @param text.random A character string used in printouts and forest
#' plot to label the pooled random effects estimate.
#' @param text.predict A character string used in printouts and forest
#' plot to label the prediction interval.
#' @param text.w.common A character string used to label weights of
#' common effect model.
#' @param text.w.random A character string used to label weights of
#' random effects model.
#' @param title Title of meta-analysis / systematic review.
#' @param complab Comparison label.
#' @param outclab Outcome label.
#' @param label.e Label for experimental group.
#' @param label.c Label for control group.
#' @param label.left Graph label on left side of null effect in forest plot.
#' @param label.right Graph label on right side of null effect in forest plot.
#' @param col.label.left The colour of the graph label on the left side of
#' the null effect.
#' @param col.label.right The colour of the graph label on the right side of
#' the null effect.
#' @param subgroup An optional vector to conduct a meta-analysis with
#' subgroups.
#' @param subgroup.name A character string with a name for the
#' subgroup variable.
#' @param print.subgroup.name A logical indicating whether the name of
#' the subgroup variable should be printed in front of the group
#' labels.
#' @param sep.subgroup A character string defining the separator
#' between name of subgroup variable and subgroup label.
#' @param test.subgroup A logical value indicating whether to print
#' results of test for subgroup differences.
#' @param prediction.subgroup A logical indicating whether prediction
#' intervals should be printed for subgroups.
#' @param seed.predict.subgroup A numeric vector providing seeds to
#' calculate bootstrap prediction intervals within subgroups. Must
#' be of same length as the number of subgroups.
#' @param byvar Deprecated argument (replaced by 'subgroup').
#' @param hakn Deprecated argument (replaced by 'method.random.ci').
#' @param adhoc.hakn Deprecated argument (replaced by
#' 'adhoc.hakn.ci').
#' @param print.CMH A logical indicating whether result of the
#' Cochran-Mantel-Haenszel test for overall effect should be
#' printed.
#' @param keepdata A logical indicating whether original data (set)
#' should be kept in meta object.
#' @param warn A logical indicating whether warnings should be printed
#' (e.g., if \code{incr} is added to studies with zero cell
#' frequencies).
#' @param warn.deprecated A logical indicating whether warnings should
#' be printed if deprecated arguments are used.
#' @param control An optional list to control the iterative process to
#' estimate the between-study variance \eqn{\tau^2}. This argument
#' is passed on to \code{\link[metafor]{rma.uni}} or
#' \code{\link[metafor]{rma.glmm}}.
#' @param \dots Additional arguments passed on to
#' \code{\link[metafor]{rma.glmm}} function and to catch deprecated
#' arguments.
#'
#' @details
#' Calculation of common and random effects estimates for meta-analyses
#' with binary outcome data.
#'
#' The following measures of treatment effect are available (Rücker et
#' al., 2009):
#'
#' \itemize{
#' \item Risk ratio (\code{sm = "RR"})
#' \item Odds ratio (\code{sm = "OR"})
#' \item Risk difference (\code{sm = "RD"})
#' \item Arcsine difference (\code{sm = "ASD"})
#' \item Diagnostic Odds ratio (\code{sm = "DOR"})
#' \item Vaccine efficacy or vaccine effectiveness (\code{sm = "VE"})
#' }
#'
#' Note, mathematically, odds ratios and diagnostic odds ratios are
#' identical, however, the labels in printouts and figures
#' differ. Furthermore, log risk ratio (logRR) and log vaccine ratio
#' (logVR) are mathematical identical, however, back-transformed
#' results differ as vaccine efficacy or effectiveness is defined as
#' \code{VE = 100 * (1 - RR)}.
#'
#' A three-level random effects meta-analysis model (Van den Noortgate
#' et al., 2013) is utilised if argument \code{cluster} is used and at
#' least one cluster provides more than one estimate. Internally,
#' \code{\link[metafor]{rma.mv}} is called to conduct the analysis and
#' \code{\link[metafor]{weights.rma.mv}} with argument \code{type =
#' "rowsum"} is used to calculate random effects weights.
#'
#' Default settings are utilised for several arguments (assignments
#' using \code{\link{gs}} function). These defaults can be changed for
#' the current R session using the \code{\link{settings.meta}}
#' function.
#'
#' Furthermore, R function \code{\link{update.meta}} can be used to
#' rerun a meta-analysis with different settings.
#'
#' \subsection{Meta-analysis method}{
#'
#' By default, both common effect (also called common effect) and
#' random effects models are considered (see arguments \code{common}
#' and \code{random}). If \code{method} is \code{"MH"} (default), the
#' Mantel-Haenszel method (Greenland & Robins, 1985; Robins et al.,
#' 1986) is used to calculate the common effect estimate; if
#' \code{method} is \code{"Inverse"}, inverse variance weighting is
#' used for pooling (Fleiss, 1993); if \code{method} is \code{"Peto"},
#' the Peto method is used for pooling (Yusuf et al., 1985); if
#' \code{method} is \code{"SSW"}, the sample size method is used for
#' pooling (Bakbergenuly et al., 2020).
#'
#' While the Mantel-Haenszel and Peto method are defined under the
#' common effect model, random effects variants based on these methods
#' are also implemented in \code{metabin}. Following RevMan 5, the
#' Mantel-Haenszel estimator is used in the calculation of the
#' between-study heterogeneity statistic Q which is used in the
#' DerSimonian-Laird estimator (DerSimonian and Laird,
#' 1986). Accordingly, the results for the random effects
#' meta-analysis using the Mantel-Haenszel or inverse variance method
#' are typically very similar. For the Peto method, Peto's log odds
#' ratio, i.e. \code{(O-E) / V} and its standard error \code{sqrt(1 /
#' V)} with \code{O-E} and \code{V} denoting "Observed minus Expected"
#' and its variance, are utilised in the random effects
#' model. Accordingly, results of a random effects model using
#' \code{sm = "Peto"} can be different to results from a random
#' effects model using \code{sm = "MH"} or \code{sm =
#' "Inverse"}. Note, the random effects estimate is based on the
#' inverse variance method for all methods discussed so far.
#'
#' A distinctive and frequently overlooked advantage of binary
#' endpoints is that individual patient data (IPD) can be extracted
#' from a two-by-two table. Accordingly, statistical methods for IPD,
#' i.e., logistic regression and generalised linear mixed models, can
#' be utilised in a meta-analysis of binary outcomes (Stijnen et al.,
#' 2010; Simmonds et al., 2016).
#'
#' R package \bold{brglm2} must be available to fit a one-stage logistic
#' regression model with penalised likelihood (Evrenoglou et al., 2022).
#' The estimation of the summary odds ratio relies on the maximisation of the
#' likelihood function, penalized using a Firth-type correction. This
#' penalisation aims to reduce bias in cases with rare events and a small
#' number of available studies. However, this method is not restricted
#' to only such cases and can be applied more generally to binary data. Note,
#' with this type of penalisation, all studies can be included in the analysis,
#' regardless of the total number of observed events. This allows both single
#' and double zero studies to be included without any continuity correction.
#' The random effects model uses a multiplicative heterogeneity parameter
#' \eqn{\phi}, added to the model as an \emph{ad hoc} term. The estimation of
#' this parameter relies on a modified expression of Pearson's statistic, which
#' accounts for sparse data. An estimate of \eqn{\phi} equal to 1 indicates the
#' absence of heterogeneity.
#'
#' Generalised linear mixed models are available
#' (argument \code{method = "GLMM"}) for the odds ratio as summary measure for
#' the common effect and random effects model by calling the
#' \code{\link[metafor]{rma.glmm}} function from R package
#' \bold{metafor} internally.
#'
#' Four different GLMMs are available for
#' meta-analysis with binary outcomes using argument \code{model.glmm}
#' (which corresponds to argument \code{model} in the
#' \code{\link[metafor]{rma.glmm}} function):
#' \tabular{cl}{
#' 1. \tab Logistic regression model with common study effects
#' (default) \cr
#' \tab (\code{model.glmm = "UM.FS"}, i.e., \bold{U}nconditional
#' \bold{M}odel - \bold{F}ixed \bold{S}tudy effects) \cr
#' 2. \tab Mixed-effects logistic regression model with random study
#' effects \cr
#' \tab (\code{model.glmm = "UM.RS"}, i.e., \bold{U}nconditional
#' \bold{M}odel - \bold{R}andom \bold{S}tudy effects) \cr
#' 3. \tab Generalised linear mixed model (conditional
#' Hypergeometric-Normal) \cr
#' \tab (\code{model.glmm = "CM.EL"}, i.e., \bold{C}onditional
#' \bold{M}odel - \bold{E}xact \bold{L}ikelihood) \cr
#' 4. \tab Generalised linear mixed model (conditional
#' Binomial-Normal) \cr
#' \tab (\code{model.glmm = "CM.AL"}, i.e., \bold{C}onditional
#' \bold{M}odel - \bold{A}pproximate \bold{L}ikelihood)
#' }
#'
#' Details on these four GLMMs as well as additional arguments which
#' can be provided using argument '\code{\dots}' in \code{metabin} are
#' described in \code{\link[metafor]{rma.glmm}} where you can also
#' find information on the iterative algorithms used for estimation.
#' Note, regardless of which value is used for argument
#' \code{model.glmm}, results for two different GLMMs are calculated:
#' common effect model (with fixed treatment effect) and random
#' effects model (with random treatment effects).
#' }
#'
#' \subsection{Continuity correction}{
#'
#' Three approaches are available to apply a continuity correction:
#' \itemize{
#' \item Only studies with a zero cell count (\code{method.incr =
#' "only0"})
#' \item All studies if at least one study has a zero cell count
#' (\code{method.incr = "if0all"})
#' \item All studies irrespective of zero cell counts
#' (\code{method.incr = "all"})
#' }
#'
#' By default, a continuity correction is only applied to studies with
#' a zero cell count (\code{method.incr = "only0"}). This method
#' showed the best performance for the odds ratio in a simulation
#' study under the random effects model (Weber et al., 2020).
#'
#' The continuity correction method is used both to calculate
#' individual study results with confidence limits and to conduct
#' meta-analysis based on the inverse variance method. For the risk
#' difference, the method is only considered to calculate standard
#' errors and confidence limits. For Peto method and GLMMs no
#' continuity correction is used in the meta-analysis. Furthermore,
#' the continuity correction is ignored for individual studies for the
#' Peto method.
#'
#' For studies with a zero cell count, by default, 0.5 (argument
#' \code{incr}) is added to all cell frequencies for the odds ratio or
#' only the number of events for the risk ratio (argument
#' \code{RR.Cochrane = FALSE}, default). The increment is added to all
#' cell frequencies for the risk ratio if argument \code{RR.Cochrane =
#' TRUE}. For the risk difference, \code{incr} is only added to all
#' cell frequencies to calculate the standard error. Finally, a
#' treatment arm continuity correction is used if \code{incr = "TACC"}
#' (Sweeting et al., 2004; Diamond et al., 2007).
#'
#' For odds ratio and risk ratio, treatment estimates and standard
#' errors are only calculated for studies with zero or all events in
#' both groups if \code{allstudies = TRUE}.
#'
#' For the Mantel-Haenszel method, by default (if \code{MH.exact} is
#' FALSE), \code{incr} is added to cell frequencies of a study with a
#' zero cell count in the calculation of the pooled risk ratio or odds
#' ratio as well as the estimation of the variance of the pooled risk
#' difference, risk ratio or odds ratio. This approach is also used in
#' other software, e.g. RevMan 5 and the Stata procedure
#' metan. According to Fleiss (in Cooper & Hedges, 1994), there is no
#' need to add 0.5 to a cell frequency of zero to calculate the
#' Mantel-Haenszel estimate and he advocates the exact method
#' (\code{MH.exact} = TRUE). Note, estimates based on exact
#' Mantel-Haenszel method or GLMM are not defined if the number of
#' events is zero in all studies either in the experimental or control
#' group.
#' }
#'
#' \subsection{Subgroup analysis}{
#'
#' Argument \code{subgroup} can be used to conduct subgroup analysis for
#' a categorical covariate. The \code{\link{metareg}} function can be
#' used instead for more than one categorical covariate or continuous
#' covariates.
#' }
#'
#' \subsection{Exclusion of studies from meta-analysis}{
#'
#' Arguments \code{subset} and \code{exclude} can be used to exclude
#' studies from the meta-analysis. Studies are removed completely from
#' the meta-analysis using argument \code{subset}, while excluded
#' studies are shown in printouts and forest plots using argument
#' \code{exclude} (see Examples in \code{\link{metagen}}).
#' Meta-analysis results are the same for both arguments.
#' }
#'
#' \subsection{Presentation of meta-analysis results}{
#'
#' Internally, both common effect and random effects models are
#' calculated regardless of values choosen for arguments
#' \code{common} and \code{random}. Accordingly, the estimate
#' for the random effects model can be extracted from component
#' \code{TE.random} of an object of class \code{"meta"} even if
#' argument \code{random = FALSE}. However, all functions in R
#' package \bold{meta} will adequately consider the values for
#' \code{common} and \code{random}. E.g. function
#' \code{\link{print.meta}} will not print results for the random
#' effects model if \code{random = FALSE}.
#'
#' A prediction interval will only be shown if \code{prediction =
#' TRUE}.
#' }
#'
#' @return
#' An object of class \code{c("metabin", "meta")} with corresponding
#' generic functions (see \code{\link{meta-object}}).
#'
#' @author Guido Schwarzer \email{guido.schwarzer@@uniklinik-freiburg.de}
#'
#' @seealso \code{\link{meta-package}}, \code{\link{update.meta}},
#' \code{\link{forest}}, \code{\link{funnel}},
#' \code{\link{metabias}}, \code{\link{metacont}},
#' \code{\link{metagen}}, \code{\link{metareg}},
#' \code{\link{print.meta}}
#'
#' @references
#' Bakbergenuly I, Hoaglin DC, Kulinskaya E (2020):
#' Methods for estimating between-study variance and overall
#' effect in meta-analysis of odds-ratios.
#' \emph{Research Synthesis Methods},
#' \bold{11}, 426--42
#'
#' Cooper H & Hedges LV (1994):
#' \emph{The Handbook of Research Synthesis}.
#' Newbury Park, CA: Russell Sage Foundation
#'
#' Diamond GA, Bax L, Kaul S (2007):
#' Uncertain Effects of Rosiglitazone on the Risk for Myocardial
#' Infarction and Cardiovascular Death.
#' \emph{Annals of Internal Medicine},
#' \bold{147}, 578--81
#'
#' DerSimonian R & Laird N (1986):
#' Meta-analysis in clinical trials.
#' \emph{Controlled Clinical Trials},
#' \bold{7}, 177--88
#'
#' Evrenoglou T, White IR, Afach S, Mavridis D, Chaimani A. (2022):
#' Network meta-analysis of rare events using penalized likelihood regression.
#' \emph{Statistics in Medicine},
#' \bold{41}, 5203--19
#'
#' Fleiss JL (1993):
#' The statistical basis of meta-analysis.
#' \emph{Statistical Methods in Medical Research},
#' \bold{2}, 121--45
#'
#' Greenland S & Robins JM (1985):
#' Estimation of a common effect parameter from sparse follow-up data.
#' \emph{Biometrics},
#' \bold{41}, 55--68
#'
#' \emph{Review Manager (RevMan)} [Computer program]. Version 5.4.
#' The Cochrane Collaboration, 2020
#'
#' Robins J, Breslow N, Greenland S (1986):
#' Estimators of the Mantel-Haenszel Variance Consistent in Both
#' Sparse Data and Large-Strata Limiting Models.
#' \emph{Biometrics},
#' \bold{42}, 311--23
#'
#' Rücker G, Schwarzer G, Carpenter J, Olkin I (2009):
#' Why add anything to nothing? The arcsine difference as a measure of
#' treatment effect in meta-analysis with zero cells.
#' \emph{Statistics in Medicine},
#' \bold{28}, 721--38
#'
#' Simmonds MC, Higgins JP (2016):
#' A general framework for the use of logistic regression models in
#' meta-analysis.
#' \emph{Statistical Methods in Medical Research},
#' \bold{25}, 2858--77
#'
#' StataCorp. 2011.
#' \emph{Stata Statistical Software: Release 12}.
#' College Station, TX: StataCorp LP.
#'
#' Stijnen T, Hamza TH, Ozdemir P (2010):
#' Random effects meta-analysis of event outcome in the framework of
#' the generalized linear mixed model with applications in sparse
#' data.
#' \emph{Statistics in Medicine},
#' \bold{29}, 3046--67
#'
#' Sweeting MJ, Sutton AJ, Lambert PC (2004):
#' What to add to nothing? Use and avoidance of continuity corrections
#' in meta-analysis of sparse data.
#'\emph{Statistics in Medicine},
#' \bold{23}, 1351--75
#'
#' Van den Noortgate W, López-López JA, Marín-Martínez F, Sánchez-Meca J (2013):
#' Three-level meta-analysis of dependent effect sizes.
#' \emph{Behavior Research Methods},
#' \bold{45}, 576--94
#'
#' Viechtbauer W (2010):
#' Conducting meta-analyses in R with the metafor package.
#' \emph{Journal of Statistical Software},
#' \bold{36}, 1--48
#'
#' Weber F, Knapp G, Ickstadt K, Kundt G, Glass Ä (2020):
#' Zero-cell corrections in random-effects meta-analyses.
#' \emph{Research Synthesis Methods},
#' \bold{11}, 913--9
#'
#' Yusuf S, Peto R, Lewis J, Collins R, Sleight P (1985):
#' Beta blockade during and after myocardial infarction: An overview
#' of the randomized trials.
#' \emph{Progress in Cardiovascular Diseases},
#' \bold{27}, 335--71
#'
#' @examples
#' # Calculate odds ratio and confidence interval for a single study
#' #
#' metabin(10, 20, 15, 20, sm = "OR")
#'
#' # Different results (due to handling of studies with double zeros)
#' #
#' metabin(0, 10, 0, 10, sm = "OR")
#' metabin(0, 10, 0, 10, sm = "OR", allstudies = TRUE)
#'
#' # Use subset of Olkin (1995) to conduct meta-analysis based on
#' # inverse variance method (with risk ratio as summary measure)
#' #
#' data(Olkin1995)
#' m1 <- metabin(ev.exp, n.exp, ev.cont, n.cont,
#' data = Olkin1995, subset = c(41, 47, 51, 59),
#' studlab = paste(author, year),
#' method = "Inverse")
#' m1
#' # Show results for individual studies
#' summary(m1)
#'
#' # Use different subset of Olkin (1995)
#' #
#' m2 <- metabin(ev.exp, n.exp, ev.cont, n.cont,
#' data = Olkin1995, subset = year < 1970,
#' studlab = paste(author, year),
#' method = "Inverse")
#' m2
#' forest(m2)
#'
#' # Meta-analysis with odds ratio as summary measure
#' #
#' m3 <- metabin(ev.exp, n.exp, ev.cont, n.cont,
#' data = Olkin1995, subset = year < 1970,
#' studlab = paste(author, year),
#' sm = "OR", method = "Inverse")
#' # Same meta-analysis result using 'update.meta' function
#' m3 <- update(m2, sm = "OR")
#' m3
#'
#' # Meta-analysis based on Mantel-Haenszel method (with odds ratio as
#' # summary measure)
#' #
#' m4 <- update(m3, method = "MH")
#' m4
#'
#' # Meta-analysis based on Peto method (only available for odds ratio
#' # as summary measure)
#' #
#' m5 <- update(m3, method = "Peto")
#' m5
#'
#' \dontrun{
#' # Meta-analysis using generalised linear mixed models
#' # (only if R package 'lme4' is available)
#' #
#'
#' # Logistic regression model with (k = 4) fixed study effects
#' # (default: model.glmm = "UM.FS")
#' #
#' m6 <- metabin(ev.exp, n.exp, ev.cont, n.cont,
#' studlab = paste(author, year),
#' data = Olkin1995, subset = year < 1970, method = "GLMM")
#' # Same results:
#' m6 <- update(m2, method = "GLMM")
#' m6
#'
#' # Mixed-effects logistic regression model with random study effects
#' # (warning message printed due to argument 'nAGQ')
#' #
#' m7 <- update(m6, model.glmm = "UM.RS")
#' #
#' # Use additional argument 'nAGQ' for internal call of 'rma.glmm'
#' # function
#' #
#' m7 <- update(m6, model.glmm = "UM.RS", nAGQ = 1)
#' m7
#'
#' # Generalised linear mixed model (conditional Hypergeometric-Normal)
#' # (R package 'BiasedUrn' must be available)
#' #
#' m8 <- update(m6, model.glmm = "CM.EL")
#' m8
#'
#' # Generalised linear mixed model (conditional Binomial-Normal)
#' #
#' m9 <- update(m6, model.glmm = "CM.AL")
#' m9
#'
#' # Logistic regression model with (k = 70) fixed study effects
#' # (about 18 seconds with Intel Core i7-3667U, 2.0GHz)
#' #
#' m10 <- metabin(ev.exp, n.exp, ev.cont, n.cont,
#' studlab = paste(author, year),
#' data = Olkin1995, method = "GLMM")
#' m10
#'
#' # Mixed-effects logistic regression model with random study effects
#' # - about 50 seconds with Intel Core i7-3667U, 2.0GHz
#' # - several warning messages, e.g. "failure to converge, ..."
#' #
#' update(m10, model.glmm = "UM.RS")
#'
#' # Conditional Hypergeometric-Normal GLMM
#' # - long computation time (about 12 minutes with Intel Core
#' # i7-3667U, 2.0GHz)
#' # - estimation problems for this very large dataset:
#' # * warning that Choleski factorisation of Hessian failed
#' # * confidence interval for treatment effect smaller in random
#' # effects model compared to common effect model
#' #
#' system.time(m11 <- update(m10, model.glmm = "CM.EL"))
#' m11
#'
#' # Generalised linear mixed model (conditional Binomial-Normal)
#' # (less than 1 second with Intel Core i7-3667U, 2.0GHz)
#' #
#' update(m10, model.glmm = "CM.AL")
#' }
#'
#' @export metabin
metabin <- function(event.e, n.e, event.c, n.c, studlab,
##
data = NULL, subset = NULL, exclude = NULL,
cluster = NULL, rho = 0,
##
method = ifelse(tau.common, "Inverse", gs("method")),
sm =
ifelse(!is.na(charmatch(tolower(method),
c("peto", "glmm", "lrp", "ssw"),
nomatch = NA)),
"OR", gs("smbin")),
incr = gs("incr"), method.incr = gs("method.incr"),
allstudies = gs("allstudies"),
##
level = gs("level"),
##
MH.exact = gs("MH.exact"), RR.Cochrane = gs("RR.Cochrane"),
Q.Cochrane =
gs("Q.Cochrane") & method == "MH" & method.tau == "DL",
model.glmm = gs("model.glmm"),
##
common = gs("common"),
random = gs("random") | !is.null(tau.preset),
overall = common | random,
overall.hetstat =
if (is.null(gs("overall.hetstat")))
common | random
else
gs("overall.hetstat"),
prediction = gs("prediction") | !missing(method.predict),
##
method.tau,
method.tau.ci = gs("method.tau.ci"),
level.hetstat = gs("level.hetstat"),
tau.preset = NULL, TE.tau = NULL,
tau.common = gs("tau.common"),
#
method.I2 = gs("method.I2"),
#
level.ma = gs("level.ma"),
method.random.ci = gs("method.random.ci"),
adhoc.hakn.ci = gs("adhoc.hakn.ci"),
##
level.predict = gs("level.predict"),
method.predict = gs("method.predict"),
adhoc.hakn.pi = gs("adhoc.hakn.pi"),
seed.predict = NULL,
##
method.bias = ifelse(sm == "OR", "Harbord",
ifelse(sm == "DOR", "Deeks",
gs("method.bias"))),
##
backtransf = gs("backtransf"),
pscale = 1,
##
text.common = gs("text.common"),
text.random = gs("text.random"),
text.predict = gs("text.predict"),
text.w.common = gs("text.w.common"),
text.w.random = gs("text.w.random"),
##
title = gs("title"), complab = gs("complab"),
outclab = "",
#
label.e = gs("label.e"), label.c = gs("label.c"),
label.left = gs("label.left"),
label.right = gs("label.right"),
col.label.left = gs("col.label.left"),
col.label.right = gs("col.label.right"),
#
subgroup, subgroup.name = NULL,
print.subgroup.name = gs("print.subgroup.name"),
sep.subgroup = gs("sep.subgroup"),
test.subgroup = gs("test.subgroup"),
prediction.subgroup = gs("prediction.subgroup"),
seed.predict.subgroup = NULL,
##
byvar, hakn, adhoc.hakn,
##
print.CMH = gs("print.CMH"),
##
keepdata = gs("keepdata"),
warn = gs("warn"), warn.deprecated = gs("warn.deprecated"),
##
control = NULL,
...
) {
##
##
## (1) Check arguments
##
##
missing.sm <- missing(sm)
missing.subgroup <- missing(subgroup)
missing.byvar <- missing(byvar)
missing.overall <- missing(overall)
missing.overall.hetstat <- missing(overall.hetstat)
missing.test.subgroup <- missing(test.subgroup)
#
missing.event.c <- missing(event.c)
missing.n.e <- missing(n.e)
missing.n.c <- missing(n.c)
#
missing.studlab <- missing(studlab)
#
missing.incr <- missing(incr)
missing.method.incr <- missing(method.incr)
missing.allstudies <- missing(allstudies)
#
missing.method.tau <- missing(method.tau)
missing.tau.common <- missing(tau.common)
missing.method.predict <- missing(method.predict)
missing.method <- missing(method)
missing.Q.Cochrane <- missing(Q.Cochrane)
missing.level.ma <- missing(level.ma)
missing.common <- missing(common)
missing.random <- missing(random)
missing.method.random.ci <- missing(method.random.ci)
#
missing.hakn <- missing(hakn)
missing.adhoc.hakn.ci <- missing(adhoc.hakn.ci)
missing.adhoc.hakn <- missing(adhoc.hakn)
missing.RR.Cochrane <- missing(RR.Cochrane)
#
missing.subgroup.name <- missing(subgroup.name)
missing.print.subgroup.name <- missing(print.subgroup.name)
missing.sep.subgroup <- missing(sep.subgroup)
missing.complab <- missing(complab)
#
missing.cluster <- missing(cluster)
#
chknumeric(rho, min = -1, max = 1)
##
chknull(sm)
sm.metafor <- c("PHI", "YUQ", "YUY", "RTET",
"PBIT", "OR2D", "OR2DN", "OR2DL",
"MPRD", "MPRR", "MPOR", "MPORC", "MPPETO")
## sm <- setchar(sm, c(gs("sm4bin"), sm.metafor))
sm <- setchar(sm, gs("sm4bin"))
metafor <- sm %in% sm.metafor
##
chklevel(level)
#
method <- setchar(method, gs("meth4bin"))
if (metafor)
method <- "Inverse"
#
is.glmm <- method == "GLMM"
is.lrp <- method == "LRP"
#
if (missing.method.tau) {
if (is.lrp)
method.tau <- "DL"
else if (is.glmm)
method.tau <- "ML"
else
method.tau <- gs("method.tau")
}
#
method.tau <- setchar(method.tau, c(gs("meth4tau"), "KD"))
##
tau.common <- replaceNULL(tau.common, FALSE)
chklogical(tau.common)
#
missing.method.I2 <- missing(method.I2)
method.I2 <- setchar(method.I2, gs("meth4i2"))
#
chklogical(prediction)
chklevel(level.predict)
##
method.predict <- setchar(method.predict, gs("meth4pi"))
##
method.tau <-
set_method_tau(method.tau, missing.method.tau,
method.predict, missing.method.predict)
method.predict <-
set_method_predict(method.predict, missing.method.predict,
method.tau, missing.method.tau)
##
if (any(method.predict == "NNF"))
is_installed_package("pimeta", argument = "method.predict", value = "NNF")
##
adhoc.hakn.pi <- setchar(replaceNA(adhoc.hakn.pi, ""), gs("adhoc4hakn.pi"))
#
method.bias <- setmethodbias(method.bias)
##
chklogical(backtransf)
##
chknumeric(pscale, length = 1)
##
if (!is.null(text.common))
chkchar(text.common, length = 1)
if (!is.null(text.random))
chkchar(text.random)
if (!is.null(text.predict))
chkchar(text.predict)
if (!is.null(text.w.common))
chkchar(text.w.common, length = 1)
if (!is.null(text.w.random))
chkchar(text.w.random, length = 1)
##
chklogical(keepdata)
##
## Additional arguments / checks for metabin objects
##
fun <- "metabin"
##
chklogical(warn)
if (sm != "RD" & pscale != 1) {
if (warn)
warning("Argument 'pscale' only considered for risk differences.",
call. = FALSE)
pscale <- 1
}
#
method.incr <- setchar(method.incr, gs("meth4incr"))
##
chklogical(allstudies)
chklogical(MH.exact)
chklogical(Q.Cochrane)
if (Q.Cochrane & (method != "MH" | method.tau != "DL")) {
warning("Argument 'Q.Cochrane' only considered for ",
"Mantel-Haenszel method in combination with ",
"DerSimonian-Laird estimator.",
call. = FALSE)
Q.Cochrane <- FALSE
}
##
if (length(model.glmm) == 0)
model.glmm <- gs("model.glmm")
model.glmm <- setchar(model.glmm, c("UM.FS", "UM.RS", "CM.EL", "CM.AL", ""))
#
chklogical(print.CMH)
##
if (sm == "ASD") {
method <- "Inverse"
if (!missing.Q.Cochrane && Q.Cochrane)
warning("Argument 'Q.Cochrane' only considered for ",
"Mantel-Haenszel method in combination with ",
"DerSimonian-Laird estimator.",
call. = FALSE)
Q.Cochrane <- FALSE
}
##
## Check for deprecated arguments in '...'
##
args <- list(...)
chklogical(warn.deprecated)
##
level.ma <- deprecated(level.ma, missing.level.ma, args, "level.comb",
warn.deprecated)
chklevel(level.ma)
##
common <- deprecated(common, missing.common, args, "comb.fixed",
warn.deprecated)
common <- deprecated(common, missing.common, args, "fixed",
warn.deprecated)
chklogical(common)
##
random <- deprecated(random, missing.random, args, "comb.random",
warn.deprecated)
chklogical(random)
##
method.random.ci <-
deprecated2(method.random.ci, missing.method.random.ci,
hakn, missing.hakn,
warn.deprecated)
if (is.logical(method.random.ci))
if (method.random.ci)
method.random.ci <- "HK"
else
method.random.ci <- "classic"
method.random.ci <- setchar(method.random.ci, gs("meth4random.ci"))
##
adhoc.hakn.ci <-
deprecated2(adhoc.hakn.ci, missing.adhoc.hakn.ci,
adhoc.hakn, missing.adhoc.hakn, warn.deprecated)
adhoc.hakn.ci <- setchar(replaceNA(adhoc.hakn.ci, ""), gs("adhoc4hakn.ci"))
#
missing.subgroup.name <- missing.subgroup.name
subgroup.name <-
deprecated(subgroup.name, missing.subgroup.name, args, "bylab",
warn.deprecated)
##
print.subgroup.name <-
deprecated(print.subgroup.name, missing.print.subgroup.name,
args, "print.byvar", warn.deprecated)
print.subgroup.name <-
replaceNULL(print.subgroup.name, gs("print.subgroup.name"))
chklogical(print.subgroup.name)
##
sep.subgroup <-
deprecated(sep.subgroup, missing.sep.subgroup, args, "byseparator",
warn.deprecated)
if (!is.null(sep.subgroup))
chkchar(sep.subgroup, length = 1)
##
RR.Cochrane <-
deprecated(RR.Cochrane, missing.RR.Cochrane, args, "RR.cochrane",
warn.deprecated)
chklogical(RR.Cochrane)
##
## Some more checks
##
chklogical(overall)
chklogical(overall.hetstat)
##
##
## (2) Read data
##
##
nulldata <- is.null(data)
sfsp <- sys.frame(sys.parent())
mc <- match.call()
##
if (nulldata)
data <- sfsp
#
# Catch 'event.e', 'n.e', 'event.c', 'n.c', 'studlab', 'subgroup', and
# 'incr' from data:
#
event.e <- catch("event.e", mc, data, sfsp)
chknull(event.e)
#
if (is.data.frame(event.e) & !is.null(attr(event.e, "pairwise"))) {
type <- attr(event.e, "type")
if (type != "binary")
stop("Wrong type for pairwise() object: '", type, "'.", call. = FALSE)
#
is.pairwise <- TRUE
#
txt.ignore <- "ignored as first argument is a pairwise object"
#
ignore_input(event.c, !missing.event.c, txt.ignore)
ignore_input(n.e, !missing.n.e, txt.ignore)
ignore_input(n.c, !missing.n.c, txt.ignore)
ignore_input(studlab, !missing.studlab, txt.ignore)
#
missing.event.c <- FALSE
missing.n.e <- FALSE
missing.n.c <- FALSE
#
if (missing.method) {
method <- attr(event.e, "method")
if (method == "" | method == "Inverse")
method <- ifelse(tau.common, "Inverse", gs("method"))
}
#
if (missing.sm)
sm <- attr(event.e, "sm")
#
if (missing.incr)
incr <- attr(event.e, "incr")
if (missing.method.incr)
method.incr <- attr(event.e, "method.incr")
if (missing.allstudies)
allstudies <- attr(event.e, "allstudies")
#
missing.incr <- FALSE
missing.method.incr <- FALSE
missing.allstudies <- FALSE
#
reference.group <- attr(event.e, "reference.group")
#
studlab <- event.e$studlab
#
treat1 <- event.e$treat1
treat2 <- event.e$treat2
#
event.c <- event.e$event2
n.e <- event.e$n1
n.c <- event.e$n2
#
pairdata <- event.e
data <- event.e
nulldata <- FALSE
#
event.e <- event.e$event1
#
wo <- treat1 == reference.group
#
if (any(wo)) {
ttreat1 <- treat1
treat1[wo] <- treat2[wo]
treat2[wo] <- ttreat1[wo]
#
tevent.e <- event.e
event.e[wo] <- event.c[wo]
event.c[wo] <- tevent.e[wo]
#
tn.e <- n.e
n.e[wo] <- n.c[wo]
n.c[wo] <- tn.e[wo]
}
#
if (missing.subgroup) {
#subgroup <- paste(paste0("'", treat1, "'"),
# paste0("'", treat2, "'"),
# sep = " vs ")
subgroup <- paste(treat1, treat2, sep = " vs ")
#
if (length(unique(subgroup)) == 1) {
if (missing.complab)
complab <- unique(subgroup)
#
subgroup <- NULL
}
else {
if (missing.overall)
overall <- FALSE
if (missing.overall.hetstat)
overall.hetstat <- FALSE
if (missing.test.subgroup)
test.subgroup <- FALSE
}
}
else
subgroup <- catch("subgroup", mc, data, sfsp)
}
else {
is.pairwise <- FALSE
#
if (missing.sm && !is.null(data) && !is.null(attr(data, "sm")))
sm <- attr(data, "sm")
#
n.e <- catch("n.e", mc, data, sfsp)
#
event.c <- catch("event.c", mc, data, sfsp)
n.c <- catch("n.c", mc, data, sfsp)
#
studlab <- catch("studlab", mc, data, sfsp)
#
subgroup <- catch("subgroup", mc, data, sfsp)
byvar <- catch("byvar", mc, data, sfsp)
#
subgroup <- deprecated2(subgroup, missing.subgroup, byvar, missing.byvar,
warn.deprecated)
#
if (!missing.incr)
incr <- catch("incr", mc, data, sfsp)
}
#
addincr <-
deprecated(method.incr, missing.method.incr, args, "addincr",
warn.deprecated)
allincr <-
deprecated(method.incr, missing.method.incr, args, "allincr",
warn.deprecated)
#
if (missing.method.incr) {
method.incr <- gs("method.incr")
##
if (is.logical(addincr) && addincr)
method.incr <- "all"
else if (is.logical(allincr) && allincr)
method.incr <- "if0all"
}
#
addincr <- allincr <- FALSE
if (!(sm == "ASD" | method %in% c("Peto", "GLMM"))) {
if (method.incr == "all")
addincr <- TRUE
else if (method.incr == "if0all")
allincr <- TRUE
}
#
k.All <- length(event.e)
#
chknull(n.e)
chknull(event.c)
chknull(n.c)
#
if (is.numeric(incr))
chknumeric(incr, min = 0)
else
incr <- setchar(incr, "TACC",
"should be numeric or the character string \"TACC\"")
#
if (metafor) {
if (length(incr) > 1) {
if (!missing.incr)
warning("Increment of 0.5 used for effect measure '", sm, "'",
call. = FALSE)
incr <- 0.5
}
else if (incr == "TACC") {
if (!missing.incr)
warning("Increment of 0.5 used for effect measure '", sm, "'",
call. = FALSE)
incr <- 0.5
}
}
#
studlab <- setstudlab(studlab, k.All)
#
by <- !is.null(subgroup)
#
# Catch 'subset', 'exclude' and 'cluster' from data:
#
subset <- catch("subset", mc, data, sfsp)
missing.subset <- is.null(subset)
##
exclude <- catch("exclude", mc, data, sfsp)
missing.exclude <- is.null(exclude)
##
cluster <- catch("cluster", mc, data, sfsp)
with.cluster <- !is.null(cluster)
##
##
## (3) Check length of essential variables
##
##
chklength(n.e, k.All, fun)
chklength(event.c, k.All, fun)
chklength(n.c, k.All, fun)
chklength(studlab, k.All, fun)
if (with.cluster)
chklength(cluster, k.All, fun)
##
if (length(incr) > 1)
chklength(incr, k.All, fun)
##
if (by) {
chklength(subgroup, k.All, fun)
chklogical(test.subgroup)
chklogical(prediction.subgroup)
}
##
## Additional checks
##
if (!by & tau.common) {
if (warn)
warning("Value for argument 'tau.common' set to FALSE as ",
"argument 'subgroup' is missing.",
call. = FALSE)
tau.common <- FALSE
}
if (by & !tau.common & !is.null(tau.preset)) {
if (warn)
warning("Argument 'tau.common' set to TRUE as ",
"argument tau.preset is not NULL.",
call. = FALSE)
tau.common <- TRUE
}
##
##
## (4) Subset, exclude studies, and subgroups
##
##
if (!missing.subset)
if ((is.logical(subset) & (sum(subset) > k.All)) ||
(length(subset) > k.All))
stop("Length of subset is larger than number of studies.")
##
if (!missing.exclude) {
if ((is.logical(exclude) & (sum(exclude) > k.All)) ||
(length(exclude) > k.All))
stop("Length of argument 'exclude' is larger than number of studies.")
##
exclude2 <- rep(FALSE, k.All)
exclude2[exclude] <- TRUE
exclude <- exclude2
}
else
exclude <- rep(FALSE, k.All)
##
##
## (5) Store complete dataset in list object data
## (if argument keepdata is TRUE)
##
##
if (keepdata) {
if (nulldata)
data <- data.frame(.event.e = event.e)
else
data$.event.e <- event.e
##
data$.n.e <- n.e
data$.event.c <- event.c
data$.n.c <- n.c
data$.studlab <- studlab
##
data$.incr <- incr
##
if (by)
data$.subgroup <- subgroup
##
if (!missing.subset) {
if (length(subset) == dim(data)[1])
data$.subset <- subset
else {
data$.subset <- FALSE
data$.subset[subset] <- TRUE
}
}
##
if (!missing.exclude)
data$.exclude <- exclude
##
if (with.cluster)
data$.id <- data$.cluster <- cluster
}
##
##
## (6) Use subset for analysis
##
##
if (!missing.subset) {
event.e <- event.e[subset]
n.e <- n.e[subset]
event.c <- event.c[subset]
n.c <- n.c[subset]
studlab <- studlab[subset]
##
cluster <- cluster[subset]
exclude <- exclude[subset]
##
if (length(incr) > 1)
incr <- incr[subset]
##
if (by)
subgroup <- subgroup[subset]
}
##
## Determine total number of studies
##
k.all <- length(event.e)
##
if (k.all == 0)
stop("No studies to combine in meta-analysis.")
##
## No meta-analysis for a single study
##
if (k.all == 1) {
common <- FALSE
random <- FALSE
prediction <- FALSE
overall <- FALSE
overall.hetstat <- FALSE
}
##
## Check variable values
##
chknumeric(event.e)
chknumeric(n.e)
chknumeric(event.c)
chknumeric(n.c)
##
## Recode integer as numeric:
##
event.e <- int2num(event.e)
n.e <- int2num(n.e)
event.c <- int2num(event.c)
n.c <- int2num(n.c)
##
if (by) {
chkmiss(subgroup)
##
if (missing.subgroup.name & is.null(subgroup.name)) {
if (!missing.subgroup)
subgroup.name <- byvarname("subgroup", mc)
else if (!missing.byvar)
subgroup.name <- byvarname("byvar", mc)
}
}
##
if (!is.null(subgroup.name))
chkchar(subgroup.name, length = 1)
##
##
## (7) Calculate results for individual studies
##
##
# Include non-informative studies?
# (i.e. studies with either zero or all events in both groups)
#
if (sm == "RD" | sm == "ASD" | metafor)
incl <- rep(1, k.all)
else {
allevents <- event.c == n.c & event.e == n.e
if (allstudies)
incl <- rep(1, k.all)
else {
if (sm %in% c("OR", "DOR"))
incl <- ifelse((event.c == 0 & event.e == 0) |
(event.c == n.c & event.e == n.e), NA, 1)
if (sm %in% c("RR", "VE"))
incl <- ifelse((event.c == 0 & event.e == 0), NA, 1)
}
}
##
## Exclude studies from meta-analysis:
##
sel1 <- event.e > n.e
sel2 <- event.c > n.c
if ((any(sel1, na.rm = TRUE)) & warn)
warning("Studies with event.e > n.e get no weight in meta-analysis.",
call. = FALSE)
if ((any(sel2, na.rm = TRUE)) & warn)
warning("Studies with event.c > n.c get no weight in meta-analysis.",
call. = FALSE)
incl[sel1 | sel2] <- NA
##
sel3 <- n.e <= 0 | n.c <= 0
if ((any(sel3, na.rm = TRUE)) & warn)
warning("Studies with non-positive values for n.e and / or n.c ",
"get no weight in meta-analysis.",
call. = FALSE)
incl[sel3] <- NA
##
sel4 <- event.e < 0 | event.c < 0
if ((any(sel4, na.rm = TRUE)) & warn)
warning("Studies with negative values for event.e and / or event.c ",
"get no weight in meta-analysis.",
call. = FALSE)
incl[sel4] <- NA
##
## Sparse computation
##
sel <- switch(sm,
OR = ((n.e - event.e) == 0 | event.e == 0 |
(n.c - event.c) == 0 | event.c == 0),
RD = ((n.e - event.e) == 0 | event.e == 0 |
(n.c - event.c) == 0 | event.c == 0),
RR = ((n.e - event.e) == 0 | event.e == 0 |
(n.c - event.c) == 0 | event.c == 0),
VE = ((n.e - event.e) == 0 | event.e == 0 |
(n.c - event.c) == 0 | event.c == 0),
ASD = rep(FALSE, length(event.e)),
DOR = ((n.e - event.e) == 0 | event.e == 0 |
(n.c - event.c) == 0 | event.c == 0))
##
sel[is.na(incl)] <- FALSE
##
sparse <- any(sel, na.rm = TRUE)
##
## Check for studies with zero cell frequencies in both groups
##
doublezeros <- FALSE
if (sparse & sm %in% c("RR", "OR") & !(method %in% c("Peto", "GLMM"))) {
sel.doublezeros <- switch(sm,
OR = (event.e == 0 & event.c == 0) |
(event.c == n.c & event.e == n.e),
RR = (event.c == 0 & event.e == 0))
if (any(sel.doublezeros, na.rm = TRUE))
doublezeros <- TRUE
}
##
## Define continuity correction
##
if (addincr) {
##
if (is.numeric(incr)) {
incr.e <- if (length(incr) == 1) rep(incr, k.all) else incr
incr.c <- if (length(incr) == 1) rep(incr, k.all) else incr
}
else {
if (all(incr == "TACC")) {
##
## Treatment arm continuity correction:
##
incr.e <- n.e / (n.e + n.c)
incr.c <- n.c / (n.e + n.c)
}
}
}
else {
if (sparse) {
if (allincr) {
##
if (is.numeric(incr)) {
incr.e <- if (length(incr) == 1) rep(incr, k.all) else incr
incr.c <- if (length(incr) == 1) rep(incr, k.all) else incr
}
else {
if (all(incr == "TACC")) {
##
## Treatment arm continuity correction:
##
incr.e <- n.e / (n.e + n.c)
incr.c <- n.c / (n.e + n.c)
}
}
}
else {
##
## Bradburn, Deeks, Altman, Stata-procedure "metan":
## & SAS PROC FREQ (for method = "Inverse")
##
if (is.numeric(incr)) {
incr.e <- incr * sel
incr.c <- incr * sel
}
else {
if (all(incr == "TACC")) {
##
## Treatment arm continuity correction:
##
incr.e <- n.e / (n.e + n.c) * sel
incr.c <- n.c / (n.e + n.c) * sel
}
}
}
}
else {
incr.e <- rep(0, k.all)
incr.c <- rep(0, k.all)
}
}
##
## No continuity correction for Peto method
##
if (method == "Peto") {
incr <- 0
incr.e <- rep(0, k.all)
incr.c <- rep(0, k.all)
}
##
n11 <- event.e * incl
n21 <- event.c * incl
n1. <- n.e * incl
n2. <- n.c * incl
##
n.. <- n1. + n2.
n12 <- n1. - n11
n22 <- n2. - n21
n.1 <- n11 + n21
n.2 <- n12 + n22
##
Q.CMH <- (sum((n11 - n1. * n.1 / n..)[!exclude], na.rm = TRUE)^2 /
sum((n1. * n2. * n.1 * n.2 / n..^3)[!exclude], na.rm = TRUE))
##
p.e <- (n11 + incr.e) / (n1. + 2 * incr.e)
p.c <- (n21 + incr.c) / (n2. + 2 * incr.c)
##
## Estimation of treatment effects in individual studies
##
if (sm %in% c("OR", "DOR")) {
if (method != "Peto") {
##
## Cooper & Hedges (1994), p. 251-2
##
TE <- log(((n11 + incr.e) * (n22 + incr.c)) /
((n12 + incr.e) * (n21 + incr.c)))
seTE <- sqrt((1 / (n11 + incr.e) + 1 / (n12 + incr.e) +
1 / (n21 + incr.c) + 1 / (n22 + incr.c)))
}
else {
##
## Cooper & Hedges (1994), p. 252
##
O <- n11
E <- n1. * n.1 / n..
V <- n1. * n2. * n.1 * n.2 / ((n.. - 1) * n..^2)
##
TE <- (O - E) / V
seTE <- sqrt(1 / V)
}
}
else if (sm %in% c("RR", "VE")) {
##
## Cooper & Hedges (1994), p. 247-8
##
if (!RR.Cochrane) {
TE <- log(((n11 + incr.e) / (n1. + incr.e)) /
((n21 + incr.c) / (n2. + incr.c)))
##
## Hartung & Knapp (2001), Stat Med, equation (18)
##
seTE <- sqrt((1 / (n11 + incr.e * (!allevents)) - 1 / (n1. + incr.e) +
1 / (n21 + incr.c * (!allevents)) - 1 / (n2. + incr.c)))
}
else {
TE <- log(((n11 + incr.e) / (n1. + 2 * incr.e)) /
((n21 + incr.c) / (n2. + 2 * incr.c)))
seTE <- sqrt((1 / (n11 + incr.e) - 1 / (n1. + 2 * incr.e) +
1 / (n21 + incr.c) - 1 / (n2. + 2 * incr.c)))
}
}
else if (sm == "RD") {
##
## Cooper & Hedges (1994), p. 246-7
##
TE <- n11 / n1. - n21 / n2.
seTE <- sqrt((n11 + incr.e) * (n12 + incr.e) / (n1. + 2 * incr.e)^3 +
(n21 + incr.c) * (n22 + incr.c) / (n2. + 2 * incr.c)^3)
}
else if (sm == "ASD") {
##
## Ruecker et al. (2009)
##
TE <- asin(sqrt(n11 / n1.)) - asin(sqrt(n21 / n2.))
seTE <- sqrt(0.25 * (1 / n1. + 1 / n2.))
}
else if (metafor) {
##
## Other effect measures calculated in R package metafor
##
tmp <- escalc(measure = sm,
ai = n11, bi = n12, ci = n21, di = n22,
add = incr, to = method.incr, drop00 = !allstudies)
TE <- tmp$yi
seTE <- sqrt(tmp$vi)
}
##
##
## (8) Additional checks for three-level model
##
##
three.level <- FALSE
sel.ni <- !is.infinite(TE) & !is.infinite(seTE)
##
## Only conduct three-level meta-analysis if variable 'cluster'
## contains duplicate values after removing inestimable study
## results standard errors
##
if (with.cluster &&
length(unique(cluster[sel.ni])) != length(cluster[sel.ni]))
three.level <- TRUE
##
if (three.level) {
chkmlm(method.tau, missing.method.tau, method.predict,
method, missing.method)
##
common <- FALSE
method <- "Inverse"
is.glmm <- FALSE
is.lrp <- FALSE
##
if (!(method.tau %in% c("REML", "ML")))
method.tau <- "REML"
}
#
if (is.lrp) {
is_installed_package("brglm2", fun, "method", " = \"LRP\"")
#
if (!missing.method.tau & method.tau != "DL")
ignore_input(method.tau, text = "for penalised logistic regression")
#
if (by & tau.common)
stop("Subgroup analysis not defined for penalised logistic regression ",
"assuming a common tau-squared.",
call. = FALSE)
}
##
##
## (9) Additional checks for GLMM, penalised logistic regression,
## Peto method or SSW
##
##
if (sm != "OR") {
if (method == "Peto")
stop("Peto's method only possible with argument 'sm = \"OR\"'")
else if (method == "SSW")
stop("Sample size weighting only available with argument 'sm = \"OR\"'")
else if (is.glmm)
stop("Generalised linear mixed models only possible with ",
"argument 'sm = \"OR\"'.")
else if (is.lrp)
stop("Logistic regression with penalised likelihood only possible with ",
"argument 'sm = \"OR\"'.")
}
##
if (is.glmm) {
chkglmm(sm, method.tau, method.random.ci, method.predict,
adhoc.hakn.ci, adhoc.hakn.pi,
"OR")
##
if (!is.null(TE.tau)) {
if (warn)
warning("Argument 'TE.tau' not considered for GLMM.",
call. = FALSE)
TE.tau <- NULL
}
##
if (!is.null(tau.preset)) {
if (warn)
warning("Argument 'tau.preset' not considered for GLMM.",
call. = FALSE)
tau.preset <- NULL
}
#
if (model.glmm == "CM.EL")
is_installed_package("BiasedUrn", fun, "model.glmm", " = \"CM.EL\"")
}
#
if (is.lrp) {
chklrp(sm, method.tau, method.random.ci, method.predict,
adhoc.hakn.ci, adhoc.hakn.pi, "OR")
#
if (warn) {
txt.warn <- "for penalised logistic regression"
#
ignore_input(TE.tau, !is.null(TE.tau), txt.warn)
ignore_input(tau.preset, !is.null(tau.preset), txt.warn)
#
if (!missing.method.I2 & method.I2 == "tau2")
warning("Argument 'method.I2' set to \"Q\" for ",
"penalised logistic regression.",
call. = FALSE)
}
#
TE.tau <- NULL
tau.preset <- NULL
method.I2 <- "Q"
}
##
## No need to add anything to cell counts for
## (i) arcsine difference as summary measure
## (ii) Peto method, GLMM, or penalised logistic regression
##
if (sm == "ASD" | method %in% c("Peto", "GLMM", "LRP")) {
if ((!missing.incr & any(incr != 0)) |
allincr | addincr |
(!missing.allstudies & allstudies)
)
if (sm == "ASD") {
if ((sparse | addincr) & warn) {
warning("Note, no continuity correction considered ",
"for arcsine difference (sm = \"ASD\").",
call. = FALSE)
}
}
else if (method == "Peto") {
if ((sparse | addincr) & warn)
warning("Note, no continuity correction considered ",
"for method = \"Peto\".",
call. = FALSE)
}
else if (is.glmm | is.lrp) {
if ((sparse | addincr) & warn)
warning("Note, for method = \"", method,
"\", continuity correction ",
"only used to calculate individual study results.",
call. = FALSE)
}
}
##
##
## (10) Do meta-analysis
##
##
k <- sum(!is.na(event.e[!exclude]) & !is.na(event.c[!exclude]) &
!is.na(n.e[!exclude]) & !is.na(n.c[!exclude]))
##
for (i in seq_along(method.random.ci))
if (k == 1 & method.random.ci[i] == "HK")
method.random.ci[i] <- "classic"
##
if (all(incr.e == 0) & all(incr.c == 0) & method == "MH" &
MH.exact == FALSE)
MH.exact <- TRUE
##
if (method == "MH") {
incr.e <- incr.e * (!MH.exact)
incr.c <- incr.c * (!MH.exact)
##
if (sm %in% c("OR", "DOR")) {
##
## Cooper & Hedges (1994), p. 253-5 (MH.exact == TRUE)
##
## Bradburn, Deeks, Altman, Stata-procedure "metan"
## und RevMan 3.1 (MH.exact == FALSE)
##
A <- (n11 + incr.e) * (n22 + incr.c) / (n.. + 2 * incr.e + 2 * incr.c)
B <- (n11 + incr.e + n22 + incr.c) / (n.. + 2 * incr.e + 2 * incr.c)
C <- (n12 + incr.e) * (n21 + incr.c) / (n.. + 2 * incr.e + 2 * incr.c)
D <- (n12 + incr.e + n21 + incr.c) / (n.. + 2 * incr.e + 2 * incr.c)
##
A[exclude] <- B[exclude] <- C[exclude] <- D[exclude] <- 0
##
## Cooper & Hedges (1994), p. 265-6
##
w.common <- C
TE.common <- log(sum(A, na.rm = TRUE) / sum(C, na.rm = TRUE))
seTE.common <- sqrt((1 / (2 * sum(A, na.rm = TRUE)^2) *
(sum(A * B, na.rm = TRUE) +
exp(TE.common) * (sum(B * C, na.rm = TRUE) +
sum(A * D, na.rm = TRUE)) +
exp(TE.common)^2 * sum(C * D, na.rm = TRUE))))
}
else if (sm %in% c("RR", "VE")) {
##
## Greenland, Robins (1985) (MH.exact == TRUE)
##
## Bradburn, Deeks, Altman, Stata-procedure "metan"
## (MH.exact == FALSE)
##
D <- ((n1. + 2 * incr.e) * (n2. + 2 * incr.c) * (n.1 + incr.e + incr.c) -
(n11 + incr.e) * (n21 + incr.c) * (n.. + 2 * incr.e + 2 * incr.c)) /
(n.. + 2 * incr.e + 2 * incr.c)^2
R <- (n11 + incr.e) * (n2. + 2 * incr.c) / (n.. + 2 * incr.e + 2 * incr.c)
S <- (n21 + incr.c) * (n1. + 2 * incr.e) / (n.. + 2 * incr.e + 2 * incr.c)
##
D[exclude] <- R[exclude] <- S[exclude] <- 0
##
w.common <- S
TE.common <- log(sum(R, na.rm = TRUE) / sum(S, na.rm = TRUE))
seTE.common <- sqrt(sum(D, na.rm = TRUE) / (sum(R, na.rm = TRUE) *
sum(S, na.rm = TRUE)))
}
else if (sm == "RD") {
##
## Jon Deeks (1999) (MH.exact == TRUE)
##
## Bradburn, Deeks, Altman, Stata-procedure "metan"
## und RevMan 3.1 (MH.exact == FALSE)
##
R <- ((n11 + incr.e) * (n12 + incr.e) * (n2. + 2 * incr.c)^3 +
(n21 + incr.c) * (n22 + incr.c) * (n1. + 2 * incr.e)^3) /
((n1. + 2 * incr.e) * (n2. + 2 * incr.c) * (n.. + 2 * incr.e + 2 * incr.c)^2)
S <- (n1. + 2 * incr.e) * (n2. + 2 * incr.c) /
(n.. + 2 * incr.e + 2 * incr.c)
##
R[exclude] <- S[exclude] <- 0
##
w.common <- S
TE.common <- weighted.mean(TE, w.common, na.rm = TRUE)
seTE.common <- sqrt(sum(R, na.rm = TRUE) / sum(S, na.rm = TRUE)^2)
}
##
w.common[is.na(w.common)] <- 0
}
else if (method == "Peto") {
w.common <- 1 / seTE^2
w.common[exclude] <- 0
TE.common <- weighted.mean(TE, w.common, na.rm = TRUE)
seTE.common <- sqrt(1 / sum(w.common, na.rm = TRUE))
##
w.common[is.na(w.common)] <- 0
}
else if (is.glmm) {
list.bin <- list(ai = event.e[!exclude], n1i = n.e[!exclude],
ci = event.c[!exclude], n2i = n.c[!exclude],
measure = "OR", model = model.glmm)
##
use.random <-
sum(!exclude) > 1 &
!((sum(event.e[!exclude], na.rm = TRUE) == 0 &
sum(event.c[!exclude], na.rm = TRUE) == 0) |
(!any(event.e[!exclude] != n.e[!exclude]) |
!any(event.c[!exclude] != n.c[!exclude])))
##
res.glmm <-
runGLMM(list.bin,
method.tau = method.tau,
method.random.ci = method.random.ci,
level = level.ma,
control = list(control),
use.random = use.random)
##
TE.common <- as.numeric(res.glmm$glmm.common$b)
seTE.common <- as.numeric(res.glmm$glmm.common$se)
##
w.common <- rep(NA, length(event.e))
}
else if (is.lrp) {
fit.lrp <- runLRP(event.e[!exclude], n1 = n.e[!exclude],
event2 = event.c[!exclude], n2 = n.c[!exclude])
#
TE.common <- fit.lrp$TE.common
seTE.common <- fit.lrp$seTE.common
#
w.common <- rep(NA, length(event.e))
}
else if (method == "SSW") {
w.common <- n.e * n.c / (n.e + n.c)
w.common[exclude] <- 0
TE.common <- weighted.mean(TE, w.common, na.rm = TRUE)
seTE.common <- sqrt(sum(w.common^2 * seTE^2, na.rm = TRUE) /
sum(w.common, na.rm = TRUE)^2)
##
w.common[is.na(w.common)] <- 0
}
##
m <- metagen(TE, seTE, studlab,
exclude = if (missing.exclude) NULL else exclude,
cluster = cluster, rho = rho,
##
sm = sm,
level = level,
##
common = common,
random = random,
overall = overall,
overall.hetstat = overall.hetstat,
prediction = prediction,
##
method.tau = method.tau, method.tau.ci = method.tau.ci,
level.hetstat = level.hetstat,
tau.preset = tau.preset,
TE.tau = if (Q.Cochrane) TE.common else TE.tau,
tau.common = FALSE,
#
method.I2 = method.I2,
#
level.ma = level.ma,
method.random.ci = method.random.ci,
adhoc.hakn.ci = adhoc.hakn.ci,
##
level.predict = level.predict,
method.predict = method.predict,
adhoc.hakn.pi = adhoc.hakn.pi,
seed.predict = seed.predict,
##
method.bias = method.bias,
##
backtransf = backtransf,
##
text.common = text.common, text.random = text.random,
text.predict = text.predict,
text.w.common = text.w.common, text.w.random = text.w.random,
##
title = title, complab = complab, outclab = outclab,
#
label.e = label.e, label.c = label.c,
label.left = label.left, label.right = label.right,
col.label.left = col.label.left,
col.label.right = col.label.right,
#
keepdata = FALSE,
warn = warn,
##
control = control)
##
if (method == "SSW") {
w.random <- n.e * n.c / (n.e + n.c)
w.random[exclude] <- 0
TE.random <- weighted.mean(TE, w.random, na.rm = TRUE)
seTE.random <- sqrt(sum(w.random^2 * (seTE^2 + m$tau^2), na.rm = TRUE) /
sum(w.random, na.rm = TRUE)^2)
##
w.random[is.na(w.random)] <- 0
}
#
# Estimate common tau-squared across subgroups
#
if (by & tau.common & !is.glmm)
hcc <- hetcalc(TE, seTE, method.tau, "",
if (Q.Cochrane & method == "MH") TE.common else TE.tau,
method.I2, level.hetstat, subgroup, control)
##
##
## (11) Generate R object
##
##
res <- list(event.e = event.e, n.e = n.e,
event.c = event.c, n.c = n.c,
method = method, method.random = method,
incr = if (length(unique(incr)) == 1) unique(incr) else incr,
method.incr = method.incr,
sparse = sparse,
allstudies = allstudies,
doublezeros = doublezeros,
MH.exact = MH.exact, RR.Cochrane = RR.Cochrane,
Q.Cochrane = Q.Cochrane,
Q.CMH = Q.CMH, df.Q.CMH = 1, pval.Q.CMH = pvalQ(Q.CMH, 1),
print.CMH = print.CMH,
incr.e = incr.e, incr.c = incr.c,
k.MH = if (method == "MH") sum(w.common > 0) else NA)
##
## Add meta-analysis results
## (after removing unneeded list elements)
##
m$method <- NULL
m$method.random <- NULL
m$n.e <- NULL
m$n.c <- NULL
m$pscale <- NULL
m$irscale <- NULL
m$irunit <- NULL
m$method.ci <- NULL
m$method.mean <- NULL
m$approx.TE <- NULL
m$approx.seTE <- NULL
##
res <- c(res, m)
##
## Add data
##
res$TE.tau <- TE.tau
##
res$pscale <- pscale
##
res$call <- match.call()
res$allincr <- allincr
res$addincr <- addincr
##
if (method %in% c("MH", "Peto", "GLMM", "LRP", "SSW")) {
res <- ci2meta(res, ci.c = ci(TE.common, seTE.common, level = level.ma))
res$w.common <- w.common
}
#
if (is.glmm) {
res <- addGLMM(res, res.glmm, method.I2)
res$model.glmm <- model.glmm
##
if (by) {
n.subgroups <- length(unique(subgroup[!exclude]))
if (n.subgroups > 1)
subgroup.glmm <-
factor(subgroup[!exclude], bylevs(subgroup[!exclude]))
##
hcc <-
hccGLMM(
res,
runGLMM(list.bin,
method.tau = method.tau,
method.random.ci = method.random.ci,
level = level.hetstat,
data =
if (n.subgroups > 1)
list(data.frame(subgroup.glmm))
else NULL,
mods =
if (n.subgroups > 1)
as.call(~ subgroup.glmm)
else
NULL,
control = list(control),
use.random = use.random)$glmm.random[[1]],
method.I2
)
}
}
else if (is.lrp) {
res <- ci2meta(res,
ci.r = ci(fit.lrp$TE.random, fit.lrp$seTE.random,
level = level.ma,
df = ifelse(method.random.ci == "HK",
m$k - 1, Inf)))
res$w.random <- w.common
res$phi <- fit.lrp$phi
}
else if (method == "SSW") {
res <- ci2meta(res,
ci.r = ci(TE.random, seTE.random, level = level.ma,
df = ifelse(method.random.ci == "HK",
m$k - 1, Inf)))
res$w.random <- w.random
}
##
if (keepdata) {
res$data <- data
if (!missing.subset)
res$subset <- subset
}
##
class(res) <- c(fun, "meta")
##
## Add results from subgroup analysis
##
if (by) {
res$subgroup <- subgroup
res$subgroup.name <- subgroup.name
res$print.subgroup.name <- print.subgroup.name
res$sep.subgroup <- sep.subgroup
res$test.subgroup <- test.subgroup
res$prediction.subgroup <- prediction.subgroup
res$tau.common <- tau.common
##
if (!tau.common) {
res <- c(res, subgroup(res, seed = seed.predict.subgroup))
if (res$three.level)
res <- setNA3(res)
}
else if (!is.null(tau.preset))
res <-
c(res, subgroup(res, tau.preset, seed = seed.predict.subgroup))
else {
if (is.glmm)
res <- c(res,
subgroup(res, NULL,
factor(res$subgroup, bylevs(res$subgroup)), ...))
else if (res$three.level)
res <- c(res,
subgroup(res, NULL,
factor(res$subgroup, bylevs(res$subgroup))))
else
res <-
c(res, subgroup(res, hcc$tau.resid, seed = seed.predict.subgroup))
}
##
if (tau.common && is.null(tau.preset))
res <- addHet(res, hcc, !(is.glmm | is.lrp))
##
res$n.w <- NULL
res$event.w <- NULL
##
res$n.harmonic.mean.w <- NULL
##
res$time.e.w <- NULL
res$time.c.w <- NULL
res$t.harmonic.mean.w <- NULL
##
res <- setNAwithin(res, res$three.level | is.glmm)
}
#
# Mantel-Haenszel method is common effect method
#
if (res$method.random == "MH")
res$method.random <- "Inverse"
#
# Do not return tau^2 and tau for penalized logistic regression
#
if (is.lrp) {
res$method.random <- "LRP"
#
res$tau2 <- res$lower.tau2 <- res$upper.tau2 <- NA
res$tau <- res$lower.tau <- res$upper.tau <- NA
res$method.tau <- ""
#
res <- calcPI(res)
#
res$version.brglm2 <- packageDescription("brglm2")$Version
}
##
## Backward compatibility
##
res <- backward(res)
##
class(res) <- c(fun, "meta")
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.