Nothing
.regFloat1 <- rex::rex(
or(
group(some_of("0":"9"), ".", any_of("0":"9")),
group(any_of("0":"9"), ".", some_of("0":"9"))
),
maybe(group(one_of("E", "e"), maybe(one_of("+", "-")), some_of("0":"9")))
)
.regFloat2 <- rex::rex(some_of("0":"9"), one_of("E", "e"), maybe(one_of("-", "+")), some_of("0":"9"))
.regDecimalint <- rex::rex(or("0", group("1":"9", any_of("0":"9"))))
.regNum <- rex::rex(maybe("-"), or(.regDecimalint, .regFloat1, .regFloat2))
use.utf <- function() {
opt <- getOption("cli.unicode", NULL)
if (!is.null(opt)) {
isTRUE(opt)
} else {
l10n_info()$`UTF-8` && !is.latex()
}
}
is.latex <- function() {
if (!("knitr" %in% loadedNamespaces())) {
return(FALSE)
}
get("is_latex_output", asNamespace("knitr"))()
}
##' Control Options for FOCEi
##'
##' @param sigdig Optimization significant digits. This controls:
##'
##' \itemize{
##'
##' \item The tolerance of the inner and outer optimization is \code{10^-sigdig}
##'
##' \item The tolerance of the ODE solvers is
##' \code{0.5*10^(-sigdig-2)}; For the sensitivity equations and
##' steady-state solutions the default is \code{0.5*10^(-sigdig-1.5)}
##' (sensitivity changes only applicable for liblsoda)
##'
##' \item The tolerance of the boundary check is \code{5 * 10 ^ (-sigdig + 1)}
##'
##' \item The significant figures that some tables are rounded to.
##' }
##'
##' @param atolSens Sensitivity atol, can be different than atol with
##' liblsoda. This allows a less accurate solve for gradients (if desired)
##'
##' @param rtolSens Sensitivity rtol, can be different than rtol with
##' liblsoda. This allows a less accurate solve for gradients (if desired)
##'
##' @param ssAtol Steady state absolute tolerance (atol) for calculating if steady-state
##' has been archived.
##'
##' @param ssRtol Steady state relative tolerance (rtol) for
##' calculating if steady-state has been achieved.
##'
##' @param ssAtolSens Sensitivity absolute tolerance (atol) for
##' calculating if steady state has been achieved for sensitivity compartments.
##'
##' @param ssRtolSens Sensitivity relative tolerance (rtol) for
##' calculating if steady state has been achieved for sensitivity compartments.
##'
##' @param epsilon Precision of estimate for n1qn1 optimization.
##'
##' @param maxstepsOde Maximum number of steps for ODE solver.
##'
##' @param print Integer representing when the outer step is
##' printed. When this is 0 or do not print the iterations. 1 is
##' print every function evaluation (default), 5 is print every 5
##' evaluations.
##'
##' @param scaleTo Scale the initial parameter estimate to this value.
##' By default this is 1. When zero or below, no scaling is performed.
##'
##' @param scaleObjective Scale the initial objective function to this
##' value. By default this is 1.
##'
##' @param derivEps Forward difference tolerances, which is a
##' vector of relative difference and absolute difference. The
##' central/forward difference step size h is calculated as:
##'
##' \code{h = abs(x)*derivEps[1] + derivEps[2]}
##'
##' @param derivMethod indicates the method for calculating
##' derivatives of the outer problem. Currently supports
##' "switch", "central" and "forward" difference methods. Switch
##' starts with forward differences. This will switch to central
##' differences when abs(delta(OFV)) <= derivSwitchTol and switch
##' back to forward differences when abs(delta(OFV)) >
##' derivSwitchTol.
##'
##' @param derivSwitchTol The tolerance to switch forward to central
##' differences.
##'
##' @param covDerivMethod indicates the method for calculating the
##' derivatives while calculating the covariance components
##' (Hessian and S).
##'
##' @param covMethod Method for calculating covariance. In this
##' discussion, R is the Hessian matrix of the objective
##' function. The S matrix is the sum of individual
##' gradient cross-product (evaluated at the individual empirical
##' Bayes estimates).
##'
##' \itemize{
##'
##' \item "\code{r,s}" Uses the sandwich matrix to calculate the
##' covariance, that is: \code{solve(R) \%*\% S \%*\% solve(R)}
##'
##' \item "\code{r}" Uses the Hessian matrix to calculate the
##' covariance as \code{2 \%*\% solve(R)}
##'
##' \item "\code{s}" Uses the cross-product matrix to calculate the
##' covariance as \code{4 \%*\% solve(S)}
##'
##' \item "" Does not calculate the covariance step.
##' }
##'
##' @param covTryHarder If the R matrix is non-positive definite and
##' cannot be corrected to be non-positive definite try estimating
##' the Hessian on the unscaled parameter space.
##'
##' @param hessEps is a double value representing the epsilon for the Hessian calculation.
##'
##' @param centralDerivEps Central difference tolerances. This is a
##' numeric vector of relative difference and absolute difference.
##' The central/forward difference step size h is calculated as:
##'
##' \code{h = abs(x)*derivEps[1] + derivEps[2]}
##'
##' @param lbfgsLmm An integer giving the number of BFGS updates
##' retained in the "L-BFGS-B" method, It defaults to 7.
##'
##' @param lbfgsPgtol is a double precision variable.
##'
##' On entry pgtol >= 0 is specified by the user. The iteration
##' will stop when:
##'
##' \code{max(\| proj g_i \| i = 1, ..., n) <= lbfgsPgtol}
##'
##' where pg_i is the ith component of the projected gradient.
##'
##' On exit pgtol is unchanged. This defaults to zero, when the
##' check is suppressed.
##'
##' @param lbfgsFactr Controls the convergence of the "L-BFGS-B"
##' method. Convergence occurs when the reduction in the
##' objective is within this factor of the machine
##' tolerance. Default is 1e10, which gives a tolerance of about
##' \code{2e-6}, approximately 4 sigdigs. You can check your
##' exact tolerance by multiplying this value by
##' \code{.Machine$double.eps}
##'
##' @param diagXform This is the transformation used on the diagonal
##' of the \code{chol(solve(omega))}. This matrix and values are the
##' parameters estimated in FOCEi. The possibilities are:
##'
##' \itemize{
##' \item \code{sqrt} Estimates the sqrt of the diagonal elements of \code{chol(solve(omega))}. This is the default method.
##'
##' \item \code{log} Estimates the log of the diagonal elements of \code{chol(solve(omega))}
##'
##' \item \code{identity} Estimates the diagonal elements without any transformations
##' }
##' @param sumProd Is a boolean indicating if the model should change
##' multiplication to high precision multiplication and sums to
##' high precision sums using the PreciseSums package. By default
##' this is \code{FALSE}.
##'
##'
##' @param optExpression Optimize the RxODE expression to speed up
##' calculation. By default this is turned on.
##'
##' @param ci Confidence level for some tables. By default this is
##' 0.95 or 95\% confidence.
##'
##' @param useColor Boolean indicating if focei can use ASCII color codes
##'
##' @param boundTol Tolerance for boundary issues.
##'
##' @param calcTables This boolean is to determine if the foceiFit
##' will calculate tables. By default this is \code{TRUE}
##'
##' @param ... Ignored parameters
##'
##' @param maxInnerIterations Number of iterations for n1qn1
##' optimization.
##'
##' @param maxOuterIterations Maximum number of L-BFGS-B optimization
##' for outer problem.
##'
##' @param n1qn1nsim Number of function evaluations for n1qn1
##' optimization.
##'
##' @param eigen A boolean indicating if eigenvectors are calculated
##' to include a condition number calculation.
##'
##' @param addPosthoc Boolean indicating if posthoc parameters are
##' added to the table output.
##'
##' @param printNcol Number of columns to printout before wrapping
##' parameter estimates/gradient
##'
##' @param noAbort Boolean to indicate if you should abort the FOCEi
##' evaluation if it runs into troubles. (default TRUE)
##'
##' @param interaction Boolean indicate FOCEi should be used (TRUE)
##' instead of FOCE (FALSE)
##'
##' @param cholSEOpt Boolean indicating if the generalized Cholesky
##' should be used while optimizing.
##'
##' @param cholSECov Boolean indicating if the generalized Cholesky
##' should be used while calculating the Covariance Matrix.
##'
##' @param fo is a boolean indicating if this is a FO approximation routine.
##'
##' @param cholSEtol tolerance for Generalized Cholesky
##' Decomposition. Defaults to suggested (.Machine$double.eps)^(1/3)
##'
##' @param cholAccept Tolerance to accept a Generalized Cholesky
##' Decomposition for a R or S matrix.
##'
##' @param outerOpt optimization method for the outer problem
##'
##' @param innerOpt optimization method for the inner problem (not
##' implemented yet.)
##'
##' @param stateTrim Trim state amounts/concentrations to this value.
##'
##' @param resetEtaP represents the p-value for reseting the
##' individual ETA to 0 during optimization (instead of the saved
##' value). The two test statistics used in the z-test are either
##' chol(omega^-1) \%*\% eta or eta/sd(allEtas). A p-value of 0
##' indicates the ETAs never reset. A p-value of 1 indicates the
##' ETAs always reset.
##'
##' @param resetThetaP represents the p-value for reseting the
##' population mu-referenced THETA parameters based on ETA drift
##' during optimization, and resetting the optimization. A
##' p-value of 0 indicates the THETAs never reset. A p-value of 1
##' indicates the THETAs always reset and is not allowed. The
##' theta reset is checked at the beginning and when nearing a
##' local minima. The percent change in objective function where
##' a theta reset check is initiated is controlled in
##' \code{resetThetaCheckPer}.
##'
##' @param resetThetaCheckPer represents objective function
##' \% percentage below which resetThetaP is checked.
##'
##' @param resetThetaFinalP represents the p-value for reseting the
##' population mu-referenced THETA parameters based on ETA drift
##' during optimization, and resetting the optimization one final time.
##'
##' @param resetHessianAndEta is a boolean representing if the
##' individual Hessian is reset when ETAs are reset using the
##' option \code{resetEtaP}.
##'
##' @param diagOmegaBoundUpper This represents the upper bound of the
##' diagonal omega matrix. The upper bound is given by
##' diag(omega)*diagOmegaBoundUpper. If
##' \code{diagOmegaBoundUpper} is 1, there is no upper bound on
##' Omega.
##'
##' @param diagOmegaBoundLower This represents the lower bound of the
##' diagonal omega matrix. The lower bound is given by
##' diag(omega)/diagOmegaBoundUpper. If
##' \code{diagOmegaBoundLower} is 1, there is no lower bound on
##' Omega.
##'
##' @param rhobeg Beginning change in parameters for bobyqa algorithm
##' (trust region). By default this is 0.2 or 20% of the initial
##' parameters when the parameters are scaled to 1. rhobeg and
##' rhoend must be set to the initial and final values of a trust
##' region radius, so both must be positive with 0 < rhoend <
##' rhobeg. Typically rhobeg should be about one tenth of the
##' greatest expected change to a variable. Note also that
##' smallest difference abs(upper-lower) should be greater than or
##' equal to rhobeg*2. If this is not the case then rhobeg will be
##' adjusted.
##'
##' @param rhoend The smallest value of the trust region radius that
##' is allowed. If not defined, then 10^(-sigdig-1) will be used.
##'
##' @param npt The number of points used to approximate the objective
##' function via a quadratic approximation for bobyqa. The value
##' of npt must be in the interval [n+2,(n+1)(n+2)/2] where n is
##' the number of parameters in par. Choices that exceed 2*n+1 are
##' not recommended. If not defined, it will be set to 2*n + 1
##' @param eval.max Number of maximum evaluations of the objective function
##'
##' @param iter.max Maximum number of iterations allowed.
##'
##' @param rel.tol Relative tolerance before nlminb stops.
##'
##' @param x.tol X tolerance for nlmixr optimizers
##'
##' @param abstol Absolute tolerance for nlmixr optimizer
##'
##' @param reltol tolerance for nlmixr
##'
##' @param gillK The total number of possible steps to determine the
##' optimal forward/central difference step size per parameter (by
##' the Gill 1983 method). If 0, no optimal step size is
##' determined. Otherwise this is the optimal step size
##' determined.
##'
##' @param gillRtol The relative tolerance used for Gill 1983
##' determination of optimal step size.
##'
##' @param scaleType The scaling scheme for nlmixr. The supported types are:
##'
##' \itemize{
##' \item \code{nlmixr} In this approach the scaling is performed by the following equation:
##'
##' v_{scaled} = (v_{current} - v_{init})/scaleC[i] + scaleTo
##'
##' The \code{scaleTo} parameter is specified by the \code{normType},
##' and the scales are specified by \code{scaleC}.
##'
##' \item \code{norm} This approach uses the simple scaling provided
##' by the \code{normType} argument.
##'
##' \item \code{mult} This approach does not use the data
##' normalization provided by \code{normType}, but rather uses
##' multiplicative scaling to a constant provided by the \code{scaleTo}
##' argument.
##'
##' In this case:
##'
##' v_{scaled} = v_{current}/v_{init}*scaleTo
##'
##' \item \code{multAdd} This approach changes the scaling based on
##' the parameter being specified. If a parameter is defined in an
##' exponential block (ie exp(theta)), then it is scaled on a
##' linearly, that is:
##'
##' v_{scaled} = (v_{current}-v_{init}) + scaleTo
##'
##' Otherwise the parameter is scaled multiplicatively.
##'
##' v_{scaled} = v_{current}/v_{init}*scaleTo
##'
##' }
##'
##' @param scaleC The scaling constant used with
##' \code{scaleType=nlmixr}. When not specified, it is based on
##' the type of parameter that is estimated. The idea is to keep
##' the derivatives similar on a log scale to have similar
##' gradient sizes. Hence parameters like log(exp(theta)) would
##' have a scaling factor of 1 and log(theta) would have a scaling
##' factor of ini_value (to scale by 1/value; ie
##' d/dt(log(ini_value)) = 1/ini_value or scaleC=ini_value)
##'
##' \itemize{
##'
##' \item For parameters in an exponential (ie exp(theta)) or
##' parameters specifying powers, boxCox or yeoJohnson
##' transformations , this is 1.
##'
##' \item For additive, proportional, lognormal error structures,
##' these are given by 0.5*abs(initial_estimate)
##'
##' \item Factorials are scaled by abs(1/digamma(inital_estimate+1))
##'
##' \item parameters in a log scale (ie log(theta)) are transformed
##' by log(abs(initial_estimate))*abs(initial_estimate)
##'
##' }
##'
##' These parameter scaling coefficients are chose to try to keep
##' similar slopes among parameters. That is they all follow the
##' slopes approximately on a log-scale.
##'
##' While these are chosen in a logical manner, they may not always
##' apply. You can specify each parameters scaling factor by this
##' parameter if you wish.
##'
##' @param scaleC0 Number to adjust the scaling factor by if the initial
##' gradient is zero.
##'
##' @param scaleCmax Maximum value of the scaleC to prevent overflow.
##'
##' @param scaleCmin Minimum value of the scaleC to prevent underflow.
##'
##' @param normType This is the type of parameter
##' normalization/scaling used to get the scaled initial values
##' for nlmixr. These are used with \code{scaleType} of.
##'
##' With the exception of \code{rescale2}, these come
##' from
##' \href{https://en.wikipedia.org/wiki/Feature_scaling}{Feature
##' Scaling}. The \code{rescale2} The rescaling is the same type
##' described in the
##' \href{http://apmonitor.com/me575/uploads/Main/optimization_book.pdf}{OptdesX}
##' software manual.
##'
##' In general, all all scaling formula can be described by:
##'
##' v_{scaled} = (v_{unscaled}-C_{1})/C_{2}
##'
##' Where
##'
##'
##' The other data normalization approaches follow the following formula
##'
##' v_{scaled} = (v_{unscaled}-C_{1})/C_{2};
##'
##' \itemize{
##'
##' \item \code{rescale2} This scales all parameters from (-1 to 1).
##' The relative differences between the parameters are preserved
##' with this approach and the constants are:
##'
##' C_{1} = (max(all unscaled values)+min(all unscaled values))/2
##'
##' C_{2} = (max(all unscaled values) - min(all unscaled values))/2
##'
##'
##' \item \code{rescale} or min-max normalization. This rescales all
##' parameters from (0 to 1). As in the \code{rescale2} the
##' relative differences are preserved. In this approach:
##'
##' C_{1} = min(all unscaled values)
##'
##' C_{2} = max(all unscaled values) - min(all unscaled values)
##'
##'
##' \item \code{mean} or mean normalization. This rescales to center
##' the parameters around the mean but the parameters are from 0
##' to 1. In this approach:
##'
##' C_{1} = mean(all unscaled values)
##'
##' C_{2} = max(all unscaled values) - min(all unscaled values)
##'
##' \item \code{std} or standardization. This standardizes by the mean
##' and standard deviation. In this approach:
##'
##' C_{1} = mean(all unscaled values)
##'
##' C_{2} = sd(all unscaled values)
##'
##' \item \code{len} or unit length scaling. This scales the
##' parameters to the unit length. For this approach we use the Euclidean length, that
##' is:
##'
##' C_{1} = 0
##'
##' C_{2} = sqrt(v_1^2 + v_2^2 + ... + v_n^2)
##'
##'
##' \item \code{constant} which does not perform data normalization. That is
##'
##' C_{1} = 0
##'
##' C_{2} = 1
##'
##' }
##'
##' @param gillStep When looking for the optimal forward difference
##' step size, this is This is the step size to increase the
##' initial estimate by. So each iteration the new step size =
##' (prior step size)*gillStep
##'
##' @param gillFtol The gillFtol is the gradient error tolerance that
##' is acceptable before issuing a warning/error about the gradient estimates.
##'
##' @param gillKcov The total number of possible steps to determine
##' the optimal forward/central difference step size per parameter
##' (by the Gill 1983 method) during the covariance step. If 0,
##' no optimal step size is determined. Otherwise this is the
##' optimal step size determined.
##'
##' @param gillStepCov When looking for the optimal forward difference
##' step size, this is This is the step size to increase the
##' initial estimate by. So each iteration during the covariance
##' step is equal to the new step size = (prior step size)*gillStepCov
##'
##' @param gillFtolCov The gillFtol is the gradient error tolerance
##' that is acceptable before issuing a warning/error about the
##' gradient estimates during the covariance step.
##'
##' @param rmatNorm A parameter to normalize gradient step size by the
##' parameter value during the calculation of the R matrix
##'
##' @param smatNorm A parameter to normalize gradient step size by the
##' parameter value during the calculation of the S matrix
##'
##' @param covGillF Use the Gill calculated optimal Forward difference
##' step size for the instead of the central difference step size
##' during the central difference gradient calculation.
##'
##' @param optGillF Use the Gill calculated optimal Forward difference
##' step size for the instead of the central difference step size
##' during the central differences for optimization.
##'
##' @param covSmall The covSmall is the small number to compare
##' covariance numbers before rejecting an estimate of the
##' covariance as the final estimate (when comparing sandwich vs
##' R/S matrix estimates of the covariance). This number controls
##' how small the variance is before the covariance matrix is
##' rejected.
##'
##' @param adjLik In nlmixr, the objective function matches NONMEM's
##' objective function, which removes a 2*pi constant from the
##' likelihood calculation. If this is TRUE, the likelihood
##' function is adjusted by this 2*pi factor. When adjusted this
##' number more closely matches the likelihood approximations of
##' nlme, and SAS approximations. Regardless of if this is turned
##' on or off the objective function matches NONMEM's objective
##' function.
##'
##' @param gradTrim The parameter to adjust the gradient to if the
##' |gradient| is very large.
##'
##' @param gradCalcCentralSmall A small number that represents the value
##' where |grad| < gradCalcCentralSmall where forward differences
##' switch to central differences.
##'
##' @param gradCalcCentralLarge A large number that represents the value
##' where |grad| > gradCalcCentralLarge where forward differences
##' switch to central differences.
##'
##' @param etaNudge By default initial ETA estimates start at zero;
##' Sometimes this doesn't optimize appropriately. If this value is
##' non-zero, when the n1qn1 optimization didn't perform
##' appropriately, reset the Hessian, and nudge the ETA up by this
##' value; If the ETA still doesn't move, nudge the ETA down by this
##' value. By default this value is qnorm(1-0.05/2)*1/sqrt(3), the
##' first of the Gauss Quadrature numbers times by the 0.95\% normal
##' region. If this is not successful try the second eta nudge
##' number (below). If +-etaNudge2 is not successful, then assign
##' to zero and do not optimize any longer
##'
##' @param etaNudge2 This is the second eta nudge. By default it is
##' qnorm(1-0.05/2)*sqrt(3/5), which is the n=3 quadrature point
##' (excluding zero) times by the 0.95\% normal region
##'
##' @param maxOdeRecalc Maximum number of times to reduce the ODE
##' tolerances and try to resolve the system if there was a bad
##' ODE solve.
##'
##' @param odeRecalcFactor The factor to increase the rtol/atol with
##' bad ODE solving.
##'
##' @param repeatGillMax If the tolerances were reduced when
##' calculating the initial Gill differences, the Gill difference
##' is repeated up to a maximum number of times defined by this
##' parameter.
##'
##' @param stickyRecalcN The number of bad ODE solves before reducing
##' the atol/rtol for the rest of the problem.
##'
##' @param nRetries If FOCEi doesn't fit with the current parameter
##' estimates, randomly sample new parameter estimates and restart
##' the problem. This is similar to 'PsN' resampling.
##'
##' @param eventFD Finite difference step for forward or central
##' difference estimation of event-based gradients
##'
##' @param eventType Event gradient type for dosing events; Can be
##' "gill", "central" or "forward"
##'
##' @param gradProgressOfvTime This is the time for a single objective
##' function evaluation (in seconds) to start progress bars on gradient evaluations
##'
##' @param singleOde This option allows a single ode model to include
##' the PK parameter information instead of splitting it into a
##' function and a RxODE model
##'
##' @param badSolveObjfAdj The objective function adjustment when the
##' ODE system cannot be solved. It is based on each individual bad
##' solve.
##'
##' @inheritParams configsaem
##' @inheritParams RxODE::rxSolve
##' @inheritParams minqa::bobyqa
##' @inheritParams foceiFit
##'
##' @details
##'
##' Note this uses the R's L-BFGS-B in \code{\link{optim}} for the
##' outer problem and the BFGS \code{\link[n1qn1]{n1qn1}} with that
##' allows restoring the prior individual Hessian (for faster
##' optimization speed).
##'
##' However the inner problem is not scaled. Since most eta estimates
##' start near zero, scaling for these parameters do not make sense.
##'
##' This process of scaling can fix some ill conditioning for the
##' unscaled problem. The covariance step is performed on the
##' unscaled problem, so the condition number of that matrix may not
##' be reflective of the scaled problem's condition-number.
##'
##' @author Matthew L. Fidler
##'
##' @return The control object that changes the options for the FOCEi
##' family of estimation methods
##'
##' @seealso \code{\link{optim}}
##' @seealso \code{\link[n1qn1]{n1qn1}}
##' @seealso \code{\link[RxODE]{rxSolve}}
##' @export
foceiControl <- function(sigdig = 3, ...,
epsilon = NULL, # 1e-4,
maxInnerIterations = 1000,
maxOuterIterations = 5000,
n1qn1nsim = NULL,
method = c("liblsoda", "lsoda", "dop853"),
transitAbs = NULL, atol = NULL, rtol = NULL,
atolSens = NULL, rtolSens = NULL,
ssAtol = NULL, ssRtol = NULL, ssAtolSens = NULL, ssRtolSens = NULL,
minSS = 10L, maxSS = 1000L,
maxstepsOde = 500000L, hmin = 0L, hmax = NA_real_, hini = 0, maxordn = 12L, maxords = 5L, cores,
covsInterpolation = c("locf", "linear", "nocb", "midpoint"),
print = 1L,
printNcol = floor((getOption("width") - 23) / 12),
scaleTo = 1.0,
scaleObjective = 0,
normType = c("rescale2", "mean", "rescale", "std", "len", "constant"),
scaleType = c("nlmixr", "norm", "mult", "multAdd"),
scaleCmax = 1e5,
scaleCmin = 1e-5,
scaleC = NULL,
scaleC0 = 1e5,
derivEps = rep(20 * sqrt(.Machine$double.eps), 2),
derivMethod = c("switch", "forward", "central"),
derivSwitchTol = NULL,
covDerivMethod = c("central", "forward"),
covMethod = c("r,s", "r", "s", ""),
hessEps = (.Machine$double.eps)^(1 / 3),
eventFD = sqrt(.Machine$double.eps),
eventType = c("gill", "central", "forward"),
centralDerivEps = rep(20 * sqrt(.Machine$double.eps), 2),
lbfgsLmm = 7L,
lbfgsPgtol = 0,
lbfgsFactr = NULL,
eigen = TRUE,
addPosthoc = TRUE,
diagXform = c("sqrt", "log", "identity"),
sumProd = FALSE,
optExpression = TRUE,
ci = 0.95,
useColor = crayon::has_color(),
boundTol = NULL,
calcTables = TRUE,
noAbort = TRUE,
interaction = TRUE,
cholSEtol = (.Machine$double.eps)^(1 / 3),
cholAccept = 1e-3,
resetEtaP = 0.15,
resetThetaP = 0.05,
resetThetaFinalP = 0.15,
diagOmegaBoundUpper = 5, # diag(omega) = diag(omega)*diagOmegaBoundUpper; =1 no upper
diagOmegaBoundLower = 100, # diag(omega) = diag(omega)/diagOmegaBoundLower; = 1 no lower
cholSEOpt = FALSE,
cholSECov = FALSE,
fo = FALSE,
covTryHarder = FALSE,
## Ranking based on run 025
## L-BFGS-B: 20970.53 (2094.004 429.535)
## bobyqa: 21082.34 (338.677 420.754)
## lbfgsb3* (modified for tolerances):
## nlminb: 20973.468 (755.821 458.343)
## mma: 20974.20 (Time: Opt: 3000.501 Cov: 467.287)
## slsqp: 21023.89 (Time: Opt: 460.099; Cov: 488.921)
## lbfgsbLG: 20974.74 (Time: Opt: 946.463; Cov:397.537)
outerOpt = c("nlminb", "bobyqa", "lbfgsb3c", "L-BFGS-B", "mma", "lbfgsbLG", "slsqp", "Rvmmin"),
innerOpt = c("n1qn1", "BFGS"),
##
rhobeg = .2,
rhoend = NULL,
npt = NULL,
## nlminb
rel.tol = NULL,
x.tol = NULL,
eval.max = 4000,
iter.max = 2000,
abstol = NULL,
reltol = NULL,
resetHessianAndEta = FALSE,
stateTrim = Inf,
gillK = 10L,
gillStep = 4,
gillFtol = 0,
gillRtol = sqrt(.Machine$double.eps),
gillKcov = 10L,
gillStepCov = 2,
gillFtolCov = 0,
rmatNorm = TRUE,
smatNorm = TRUE,
covGillF = TRUE,
optGillF = TRUE,
covSmall = 1e-5,
adjLik = TRUE, ## Adjust likelihood by 2pi for FOCEi methods
gradTrim = Inf,
maxOdeRecalc = 5,
odeRecalcFactor = 10^(0.5),
gradCalcCentralSmall = 1e-4,
gradCalcCentralLarge = 1e4,
etaNudge = qnorm(1-0.05/2)/sqrt(3),
etaNudge2=qnorm(1-0.05/2) * sqrt(3/5),
stiff,
nRetries = 3,
seed = 42,
resetThetaCheckPer = 0.1,
etaMat = NULL,
repeatGillMax = 3,
stickyRecalcN = 5,
gradProgressOfvTime = 10,
addProp = c("combined2", "combined1"),
singleOde = TRUE,
badSolveObjfAdj=100) {
if (is.null(boundTol)) {
boundTol <- 5 * 10^(-sigdig + 1)
}
if (is.null(epsilon)) {
epsilon <- 10^(-sigdig - 1)
}
if (is.null(abstol)) {
abstol <- 10^(-sigdig - 1)
}
if (is.null(reltol)) {
reltol <- 10^(-sigdig - 1)
}
if (is.null(rhoend)) {
rhoend <- 10^(-sigdig - 1)
}
if (is.null(lbfgsFactr)) {
lbfgsFactr <- 10^(-sigdig - 1) / .Machine$double.eps
}
if (is.null(atol)) {
atol <- 0.5 * 10^(-sigdig - 2)
}
if (is.null(rtol)) {
rtol <- 0.5 * 10^(-sigdig - 2)
}
if (is.null(atolSens)) {
atolSens <- 0.5 * 10^(-sigdig - 1.5)
}
if (is.null(rtolSens)) {
rtolSens <- 0.5 * 10^(-sigdig - 1.5)
}
if (is.null(ssAtol)) {
ssAtol <- 0.5 * 10^(-sigdig - 2)
}
if (is.null(ssRtol)) {
ssRtol <- 0.5 * 10^(-sigdig - 2)
}
if (is.null(ssAtolSens)) {
ssAtolSens <- 0.5 * 10^(-sigdig - 1.5)
}
if (is.null(ssRtolSens)) {
ssRtolSens <- 0.5 * 10^(-sigdig - 1.5)
}
if (is.null(rel.tol)) {
rel.tol <- 10^(-sigdig - 1)
}
if (is.null(x.tol)) {
x.tol <- 10^(-sigdig - 1)
}
if (is.null(derivSwitchTol)) {
derivSwitchTol <- 2 * 10^(-sigdig - 1)
}
## if (is.null(gillRtol)){
## ## FIXME: there is a way to calculate this according to the
## ## Gill paper but it is buried in their optimization book.
## gillRtol <- 10 ^ (-sigdig - 1);
## }
.xtra <- list(...)
if (is.null(transitAbs) && !is.null(.xtra$transit_abs)) { # nolint
transitAbs <- .xtra$transit_abs # nolint
}
if (missing(covsInterpolation) && !is.null(.xtra$covs_interpolation)) { # nolint
covsInterpolation <- .xtra$covs_interpolation # nolint
}
if (missing(maxInnerIterations) && !is.null(.xtra$max_iterations)) { # nolint
maxInnerIterations <- .xtra$max_iterations # nolint
}
if (!missing(stiff) && missing(method)) {
if (RxODE::rxIs(stiff, "logical")) {
if (stiff) {
method <- "lsoda"
warning("stiff=TRUE has been replaced with method = \"lsoda\".")
} else {
method <- "dop853"
warning("stiff=FALSE has been replaced with method = \"dop853\".")
}
}
} else {
if (inherits(method, "numeric")) {
method <- as.integer(method)
}
if (!RxODE::rxIs(method, "integer")) {
if (inherits(method, "character")) {
method <- match.arg(method)
} else {
method <- "liblsoda"
warning("could not figure out method, using 'liblsoda'")
}
}
}
## .methodIdx <- c("lsoda"=1L, "dop853"=0L, "liblsoda"=2L);
## method <- as.integer(.methodIdx[method]);
if (RxODE::rxIs(scaleType, "character")) {
.scaleTypeIdx <- c("norm" = 1L, "nlmixr" = 2L, "mult" = 3L, "multAdd" = 4L)
scaleType <- as.integer(.scaleTypeIdx[match.arg(scaleType)])
}
if (RxODE::rxIs(eventType, "character")) {
.eventTypeIdx <- c("gill" = 1L, "central" = 2L, "forward" = 3L)
eventType <- as.integer(.eventTypeIdx[match.arg(eventType)])
}
if (RxODE::rxIs(normType, "character")) {
.normTypeIdx <- c("rescale2" = 1L, "rescale" = 2L, "mean" = 3L, "std" = 4L, "len" = 5L, "constant" = 6)
normType <- as.integer(.normTypeIdx[match.arg(normType)])
}
derivMethod <- match.arg(derivMethod)
.methodIdx <- c("forward" = 0L, "central" = 1L, "switch" = 3L)
derivMethod <- as.integer(.methodIdx[derivMethod])
covDerivMethod <- .methodIdx[match.arg(covDerivMethod)]
if (length(covsInterpolation) > 1) covsInterpolation <- covsInterpolation[1]
if (!RxODE::rxIs(covsInterpolation, "integer")) {
covsInterpolation <- tolower(match.arg(
covsInterpolation,
c("linear", "locf", "LOCF", "constant", "nocb", "NOCB", "midpoint")
))
}
## if (covsInterpolation == "constant") covsInterpolation <- "locf";
## covsInterpolation <- as.integer(which(covsInterpolation == c("linear", "locf", "nocb", "midpoint")) - 1);
if (missing(cores)) {
cores <- RxODE::rxCores()
}
if (missing(n1qn1nsim)) {
n1qn1nsim <- 10 * maxInnerIterations + 1
}
if (length(covMethod) == 1) {
if (covMethod == "") {
covMethod <- 0L
}
}
if (RxODE::rxIs(covMethod, "character")) {
covMethod <- match.arg(covMethod)
.covMethodIdx <- c("r,s" = 1L, "r" = 2L, "s" = 3L)
covMethod <- .covMethodIdx[match.arg(covMethod)]
}
.outerOptTxt <- "custom"
if (RxODE::rxIs(outerOpt, "character")) {
outerOpt <- match.arg(outerOpt)
.outerOptTxt <- outerOpt
if (outerOpt == "bobyqa") {
RxODE::rxReq("minqa")
outerOptFun <- .bobyqa
outerOpt <- -1L
} else if (outerOpt == "nlminb") {
outerOptFun <- .nlminb
outerOpt <- -1L
} else if (outerOpt == "mma") {
outerOptFun <- .nloptr
outerOpt <- -1L
} else if (outerOpt == "slsqp") {
outerOptFun <- .slsqp
outerOpt <- -1L
} else if (outerOpt == "lbfgsbLG") {
outerOptFun <- .lbfgsbLG
outerOpt <- -1L
} else if (outerOpt == "Rvmmin") {
outerOptFun <- .Rvmmin
outerOpt <- -1L
} else {
.outerOptIdx <- c("L-BFGS-B" = 0L, "lbfgsb3c" = 1L)
outerOpt <- .outerOptIdx[outerOpt]
if (outerOpt == 1L) {
RxODE::rxReq("lbfgsb3c")
}
outerOptFun <- NULL
}
} else if (is(outerOpt, "function")) {
outerOptFun <- outerOpt
outerOpt <- -1L
}
if (RxODE::rxIs(innerOpt, "character")) {
.innerOptFun <- c("n1qn1" = 1L, "BFGS" = 2L)
innerOpt <- setNames(.innerOptFun[match.arg(innerOpt)], NULL)
}
if (resetEtaP > 0 & resetEtaP < 1) {
.resetEtaSize <- qnorm(1 - (resetEtaP / 2))
} else if (resetEtaP <= 0) {
.resetEtaSize <- Inf
} else {
.resetEtaSize <- 0
}
if (resetThetaP > 0 & resetThetaP < 1) {
.resetThetaSize <- qnorm(1 - (resetThetaP / 2))
} else if (resetThetaP <= 0) {
.resetThetaSize <- Inf
} else {
stop("Cannot always reset THETAs")
}
if (resetThetaFinalP > 0 & resetThetaFinalP < 1) {
.resetThetaFinalSize <- qnorm(1 - (resetThetaFinalP / 2))
} else if (resetThetaP <= 0) {
.resetThetaFinalSize <- Inf
} else {
stop("Cannot always reset THETAs")
}
if (inherits(addProp, "numeric")) {
if (addProp == 1) {
addProp <- "combined1"
} else if (addProp == 2) {
addProp <- "combined2"
} else {
stop("addProp must be 1, 2, \"combined1\" or \"combined2\"", call.=FALSE)
}
} else {
addProp <- match.arg(addProp)
}
.ret <- list(
maxOuterIterations = as.integer(maxOuterIterations),
maxInnerIterations = as.integer(maxInnerIterations),
method = method,
transitAbs = transitAbs,
atol = atol,
rtol = rtol,
atolSens = atolSens,
rtolSens = rtolSens,
ssAtol = ssAtol,
ssRtol = ssRtol,
ssAtolSens = ssAtolSens,
ssRtolSens = ssRtolSens,
minSS = minSS, maxSS = maxSS,
maxstepsOde = maxstepsOde,
hmin = hmin,
hmax = hmax,
hini = hini,
maxordn = maxordn,
maxords = maxords,
cores = cores,
covsInterpolation = covsInterpolation,
n1qn1nsim = as.integer(n1qn1nsim),
print = as.integer(print),
lbfgsLmm = as.integer(lbfgsLmm),
lbfgsPgtol = as.double(lbfgsPgtol),
lbfgsFactr = as.double(lbfgsFactr),
scaleTo = scaleTo,
epsilon = epsilon,
derivEps = derivEps,
derivMethod = derivMethod,
covDerivMethod = covDerivMethod,
covMethod = covMethod,
centralDerivEps = centralDerivEps,
eigen = as.integer(eigen),
addPosthoc = as.integer(addPosthoc),
diagXform = match.arg(diagXform),
sumProd = sumProd,
optExpression = optExpression,
outerOpt = as.integer(outerOpt),
ci = as.double(ci),
sigdig = as.double(sigdig),
scaleObjective = as.double(scaleObjective),
useColor = as.integer(useColor),
boundTol = as.double(boundTol),
calcTables = calcTables,
printNcol = as.integer(printNcol),
noAbort = as.integer(noAbort),
interaction = as.integer(interaction),
cholSEtol = as.double(cholSEtol),
hessEps = as.double(hessEps),
cholAccept = as.double(cholAccept),
resetEtaSize = as.double(.resetEtaSize),
resetThetaSize = as.double(.resetThetaSize),
resetThetaFinalSize = as.double(.resetThetaFinalSize),
diagOmegaBoundUpper = diagOmegaBoundUpper,
diagOmegaBoundLower = diagOmegaBoundLower,
cholSEOpt = as.integer(cholSEOpt),
cholSECov = as.integer(cholSECov),
fo = as.integer(fo),
covTryHarder = as.integer(covTryHarder),
outerOptFun = outerOptFun,
## bobyqa
rhobeg = as.double(rhobeg),
rhoend = as.double(rhoend),
npt = npt,
## nlminb
rel.tol = as.double(rel.tol),
x.tol = as.double(x.tol),
eval.max = eval.max,
iter.max = iter.max,
innerOpt = innerOpt,
## BFGS
abstol = abstol,
reltol = reltol,
derivSwitchTol = derivSwitchTol,
resetHessianAndEta = as.integer(resetHessianAndEta),
stateTrim = as.double(stateTrim),
gillK = as.integer(gillK),
gillKcov = as.integer(gillKcov),
gillRtol = as.double(gillRtol),
gillStep = as.double(gillStep),
gillStepCov = as.double(gillStepCov),
scaleType = scaleType,
normType = normType,
scaleC = scaleC,
scaleCmin = as.double(scaleCmin),
scaleCmax = as.double(scaleCmax),
scaleC0 = as.double(scaleC0),
outerOptTxt = .outerOptTxt,
rmatNorm = as.integer(rmatNorm),
smatNorm = as.integer(smatNorm),
covGillF = as.integer(covGillF),
optGillF = as.integer(optGillF),
gillFtol = as.double(gillFtol),
gillFtolCov = as.double(gillFtolCov),
covSmall = as.double(covSmall),
adjLik = adjLik,
gradTrim = as.double(gradTrim),
gradCalcCentralSmall = as.double(gradCalcCentralSmall),
gradCalcCentralLarge = as.double(gradCalcCentralLarge),
etaNudge = as.double(etaNudge),
etaNudge2=as.double(etaNudge2),
maxOdeRecalc = as.integer(maxOdeRecalc),
odeRecalcFactor = as.double(odeRecalcFactor),
nRetries = nRetries,
seed = seed,
resetThetaCheckPer = resetThetaCheckPer,
etaMat = etaMat,
repeatGillMax = as.integer(repeatGillMax),
stickyRecalcN = as.integer(max(1, abs(stickyRecalcN))),
eventFD = eventFD,
eventType = eventType,
gradProgressOfvTime = gradProgressOfvTime,
addProp = addProp,
singleOde = singleOde,
badSolveObjfAdj=badSolveObjfAdj,
...
)
if (!missing(etaMat) && missing(maxInnerIterations)) {
warning("by supplying etaMat, assume you wish to evaluate at ETAs, so setting maxInnerIterations=0")
.ret$maxInnerIterations <- 0L
.ret$etaMat
}
.tmp <- .ret
.tmp$maxsteps <- maxstepsOde
.tmp <- do.call(RxODE::rxControl, .tmp)
.ret$rxControl <- .tmp
class(.ret) <- "foceiControl"
return(.ret)
}
.ucminf <- function(par, fn, gr, lower = -Inf, upper = Inf, control = list(), ...) {
RxODE::rxReq("ucminf")
.ctl <- control
.ctl$stepmax <- control$rhobeg
.ctl$maxeval <- control$maxOuterIterations
.ctl <- .ctl[names(.ctl) %in% c("stepmax", "maxeval")]
.ret <- ucminf::ucminf(par, fn, gr = NULL, ..., control = list(), hessian = 2)
.ret$x <- .ret$par
return(.ret)
}
.bobyqa <- function(par, fn, gr, lower = -Inf, upper = Inf, control = list(), ...) {
.ctl <- control
if (is.null(.ctl$npt)) .ctl$npt <- length(par) * 2 + 1
.ctl$iprint <- 0L
.ctl <- .ctl[names(.ctl) %in% c("npt", "rhobeg", "rhoend", "iprint", "maxfun")]
.ret <- minqa::bobyqa(par, fn,
control = .ctl,
lower = lower,
upper = upper
)
.ret$x <- .ret$par
.ret$message <- .ret$msg
.ret$convergence <- .ret$ierr
.ret$value <- .ret$fval
return(.ret)
}
.lbfgsb3c <- function(par, fn, gr, lower = -Inf, upper = Inf, control = list(), ...) {
.w <- which(names(control) %in% c("trace", "factr", "pgtol", "abstol", "reltol", "lmm", "maxit", "iprint"))
.control <- control[.w]
.ret <- lbfgsb3c::lbfgsb3c(par = as.vector(par), fn = fn, gr = gr, lower = lower, upper = upper, control = .control)
.ret$x <- .ret$par
return(.ret)
}
.lbfgsbO <- function(par, fn, gr, lower = -Inf, upper = Inf, control = list(), ...) {
.control <- control[names(control) %in% c("trace", "factr", "pgtol", "abstol", "reltol", "lmm", "maxit", "iprint")]
.w <- which(sapply(.control, is.null))
.control <- .control[-.w]
.ret <- optim(
par = par, fn = fn, gr = gr, method = "L-BFGS-B",
lower = lower, upper = upper,
control = .control, hessian = FALSE
)
.ret$x <- .ret$par
return(.ret)
}
.mymin <- function(par, fn, gr, lower = -Inf, upper = Inf, control = list(), ...) {
.control <- control[names(control) %in% c(
"eval.max", "iter.max", "trace", "abs.tol",
"rel.tol", "x.tol", "xf.tol", "step.min", "step.max", "sing.tol", "scale.init", "diff.g"
)]
if (all(lower != -Inf) | all(upper != Inf)) {
warning("Optimization: Boundaries not used in Nelder-Mead")
}
fit <- mymin(par, fn, control = .control)
fit$message <- c("NON-CONVERGENCE", "NELDER_FTOL_REACHED")[1 + fit$convergence]
fit$x <- fit$par
return(fit)
}
.nlminb <- function(par, fn, gr, lower = -Inf, upper = Inf, control = list(), ...) {
.ctl <- control
.ctl <- .ctl[names(.ctl) %in% c(
"eval.max", "iter.max", "trace", "abs.tol", "rel.tol", "x.tol", "xf.tol", "step.min", "step.max", "sing.tol",
"scale.inti", "diff.g"
)]
.ctl$trace <- 0
.ret <- stats::nlminb(
start = par, objective = fn, gradient = gr, hessian = NULL, control = .ctl,
lower = lower, upper = upper
)
.ret$x <- .ret$par
## .ret$message already there.
## .ret$convergence already there.
return(.ret)
}
.Rvmmin <- function(par, fn, gr, lower = -Inf, upper = Inf, control = list(), ...) {
## Also gives unreasonable estimates
RxODE::rxReq("Rvmmin")
.masked <- rep_len(1, length(par))
.ctl <- list(
maxit = control$maxOuterIterations,
## maxfevals
trace = 0, dowarn = FALSE, checkgrad = FALSE, checkbounds = FALSE,
keepinputpar = FALSE, eps = control$abstol
)
.ret <- Rvmmin::Rvmmin(par = par, fn = fn, gr = gr, lower = lower, upper = upper, bdmsk = .masked, control = list(), ...)
.ret$x <- .ret$par
.ret$message <- .ret$message
return(.ret)
}
.nloptr <- function(par, fn, gr, lower = -Inf, upper = Inf, control = list(), ..., nloptrAlgoritm = "NLOPT_LD_MMA") {
RxODE::rxReq("nloptr")
.ctl <- list(
algorithm = nloptrAlgoritm,
xtol_rel = control$reltol,
xtol_abs = rep_len(control$abstol, length(par)),
ftol_abs = control$abstol,
ftol_rel = control$reltol,
print_level = 0,
check_derivatives = FALSE,
check_derivatives_print = FALSE,
maxeval = control$maxOuterIterations
)
.ret <- nloptr::nloptr(
x0 = par, eval_f = fn, eval_grad_f = gr,
lb = lower, ub = upper,
opts = .ctl
)
.ret$par <- .ret$solution
.ret$x <- .ret$solution
.ret$convergence <- .ret$status
.ret$value <- .ret$objective
return(.ret)
}
.bobyqaNLopt <- function(par, fn, gr, lower = -Inf, upper = Inf, control = list(), ...) {
.ctl <- list(
algorithm = "NLOPT_LN_BOBYQA",
xtol_rel = control$reltol,
xtol_abs = rep_len(control$abstol, length(par)),
ftol_abs = control$abstol,
ftol_rel = control$reltol,
print_level = 0,
check_derivatives = FALSE,
check_derivatives_print = FALSE,
maxeval = control$maxOuterIterations
)
.ret <- nloptr::nloptr(
x0 = par, eval_f = fn,
lb = lower, ub = upper,
opts = .ctl
)
.ret$par <- .ret$solution
.ret$x <- .ret$solution
.ret$convergence <- .ret$status
.ret$value <- .ret$objective
return(.ret)
}
.slsqp <- function(par, fn, gr, lower = -Inf, upper = Inf, control = list(), ...) {
return(.nloptr(par, fn, gr, lower, upper, control, ..., nloptrAlgoritm = "NLOPT_LD_SLSQP"))
}
.lbfgsbLG <- function(par, fn, gr, lower = -Inf, upper = Inf, control = list(), ...) {
.ctlLocal <- list(
algorithm = "NLOPT_LD_LBFGS",
xtol_rel = control$reltol,
xtol_abs = rep_len(control$abstol, length(par)),
ftol_abs = control$abstol,
ftol_rel = control$reltol,
print_level = 0,
check_derivatives = FALSE,
check_derivatives_print = FALSE,
maxeval = control$maxOuterIterations
)
.ctl <- opts <- list(
"algorithm" = "NLOPT_LD_AUGLAG",
xtol_rel = control$reltol,
xtol_abs = rep_len(control$abstol, length(par)),
ftol_abs = control$abstol,
ftol_rel = control$reltol,
maxeval = control$maxOuterIterations,
"local_opts" = .ctlLocal,
"print_level" = 0
)
.ret <- nloptr::nloptr(
x0 = par, eval_f = fn, eval_grad_f = gr,
lb = lower, ub = upper,
opts = .ctl
)
.ret$par <- .ret$solution
.ret$x <- .ret$solution
.ret$convergence <- .ret$status
.ret$value <- .ret$objective
return(.ret)
}
.parseOM <- function(OMGA) {
.re <- "\\bETA\\[(\\d+)\\]\\b"
.offset <- as.integer(0)
lapply(1:length(OMGA), function(.k) {
.s <- OMGA[[.k]]
.f <- eval(parse(text = (sprintf("y~%s", deparse(.s[[2]])))))
.r <- unlist(lapply(attr(terms(.f), "variables"), deparse))[-(1:2)]
.nr <- length(.r)
.ix <- grep(.re, .r)
if (.nr - length(.ix)) stop("invalid OMGA specs")
.ix <- as.integer(sub(.re, "\\1", .r))
if (any(.ix - (.offset + 1:.nr))) stop("invalid OMGA specs")
.offset <<- .offset + .nr
eval(.s[[3]])
})
}
.genOM <- function(s) {
.getNR <- function(.a) round(sqrt(2 * length(.a) + 0.25) - 0.1)
.nr <- sum(sapply(s, .getNR))
.mat <- matrix(0, .nr, .nr)
.offset <- as.integer(0)
j <- lapply(1:length(s), function(k) {
.a <- s[[k]]
.p <- .getNR(.a)
.starts <- row(.mat) > .offset & col(.mat) > .offset
.mat[col(.mat) >= row(.mat) & col(.mat) <= .offset + .p & .starts] <<- .a
.offset <<- .offset + .p
})
.a <- .mat[col(.mat) >= row(.mat)]
.mat <- t(.mat)
.mat[col(.mat) >= row(.mat)] <- .a
.mat
}
##' FOCEi fit
##'
##' @param data Data to fit; Needs to be RxODE compatible and have
##' \code{DV}, \code{AMT}, \code{EVID} in the dataset.
##' @param inits Initialization list
##' @param PKpars Pk Parameters function
##' @param model The RxODE model to use
##' @param pred The Prediction function
##' @param err The Error function
##' @param lower Lower bounds
##' @param upper Upper Bounds
##' @param fixed Boolean vector indicating what parameters should be
##' fixed.
##' @param skipCov Boolean vector indicating what parameters should be
##' fixed when calculating covariances
##' @param control FOCEi options Control list. See
##' \code{\link{foceiControl}}
##' @param thetaNames Names of the thetas to be used in the final
##' object.
##' @param etaNames Eta names to be used in the final object.
##' @param etaMat Eta matrix for initial estimates or final estimates
##' of the ETAs.
##' @param ... Ignored parameters
##' @param env An environment used to build the FOCEi or nlmixr
##' object.
##' @param keep Columns to keep from either the input dataset. For the
##' input dataset, if any records are added to the data LOCF (Last
##' Observation Carried forward) imputation is performed.
##' @param drop Columns to drop from the output
##' @return A focei fit or nlmixr fit object
##' @author Matthew L. Fidler and Wenping Wang
##' @return FOCEi fit object
##' @export
##' @examples
##'
##' \donttest{
##'
##' ## Comparison to Wang2007 objective functions
##'
##' mypar2 = function ()
##' {
##' k = theta[1] * exp(eta[1]);
##' }
##'
##' mod <- RxODE({
##' ipre = 10 * exp(-k * t)
##' })
##' pred <- function() ipre
##'
##' errProp <- function(){
##' return(prop(0.1))
##' }
##'
##' inits <- list(THTA=c(0.5),
##' OMGA=list(ETA[1] ~ 0.04));
##'
##' w7 <- Wang2007
##'
##' w7$DV <- w7$Y
##' w7$EVID <- 0
##' w7$AMT <- 0
##'
##' ## Wang2007 prop error OBF 39.458 for NONMEM FOCEi, nlmixr matches.
##' fitPi <- foceiFit(w7, inits, mypar2,mod,pred,errProp,
##' control=foceiControl(maxOuterIterations=0,covMethod=""))
##'
##' print(fitPi$objective)
##'
##' ## Wang2007 prop error OBF 39.207 for NONMEM FOCE; nlmixr matches.
##' fitP <- foceiFit(w7, inits, mypar2,mod,pred,errProp,
##' control=foceiControl(maxOuterIterations=0,covMethod="",
##' interaction=FALSE))
##'
##' print(fitP$objective)
##'
##' ## Wang 2007 prop error OBF 39.213 for NONMEM FO; nlmixr matches
##' fitPfo <- foceiFit(w7, inits, mypar2,mod,pred,errProp,
##' control=foceiControl(maxOuterIterations=0,covMethod="",
##' fo=TRUE))
##'
##' print(fitPfo$objective)
##'
##' ## Note if you have the etas you can evaluate the likelihood
##' ## of an arbitrary model. It doesn't have to be solved by
##' ## FOCEi
##'
##' etaMat <- matrix(fitPi$eta[,-1])
##'
##' fitP2 <- foceiFit(w7, inits, mypar2,mod,pred,errProp, etaMat=etaMat,
##' control=foceiControl(maxOuterIterations=0,maxInnerIterations=0,
##' covMethod=""))
##'
##'
##' errAdd <- function(){
##' return(add(0.1))
##' }
##'
##' ## Wang2007 add error of -2.059 for NONMEM FOCE=NONMEM FOCEi;
##' ## nlmixr matches.
##' fitA <- foceiFit(w7, inits, mypar2,mod,pred,errAdd,
##' control=foceiControl(maxOuterIterations=0,covMethod=""))
##'
##' ## Wang2007 add error of 0.026 for NONMEM FO; nlmixr matches
##'
##' fitAfo <- foceiFit(w7, inits, mypar2,mod,pred,errAdd,
##' control=foceiControl(maxOuterIterations=0,fo=TRUE,covMethod=""))
##'
##' ## Extending Wang2007 to add+prop with same dataset
##' errAddProp <- function(){
##' return(add(0.1) + prop(0.1));
##' }
##'
##' fitAP <- foceiFit(w7, inits, mypar2,mod,pred,errAddProp,
##' control=foceiControl(maxOuterIterations=0,covMethod=""))
##'
##' ## Checking lognormal
##'
##' errLogn <- function(){
##' return(lnorm(0.1));
##' }
##'
##' ## First run the fit with the nlmixr lnorm error
##'
##' fitLN <- foceiFit(w7, inits, mypar2,mod,pred,errLogn,
##' control=foceiControl(maxOuterIterations=0,covMethod=""))
##'
##'
##' ## Next run on the log-transformed space
##' w72 <- w7; w72$DV <- log(w72$DV)
##'
##' predL <- function() log(ipre)
##'
##' fitLN2 <- foceiFit(w72, inits, mypar2,mod,predL,errAdd,
##' control=foceiControl(maxOuterIterations=0,covMethod=""))
##'
##' ## Correct the fitLN2's objective function to be on the normal scale
##' print(fitLN2$objective + 2*sum(w72$DV))
##'
##' ## Note the objective function of the lognormal error is on the normal scale.
##' print(fitLN$objective)
##'
##' mypar2 <- function ()
##' {
##' ka <- exp(THETA[1] + ETA[1])
##' cl <- exp(THETA[2] + ETA[2])
##' v <- exp(THETA[3] + ETA[3])
##' }
##'
##' mod <- RxODE({
##' d/dt(depot) <- -ka * depot
##' d/dt(center) <- ka * depot - cl / v * center
##' cp <- center / v
##' })
##'
##' pred <- function() cp
##'
##' err <- function(){
##' return(add(0.1))
##' }
##'
##' inits <- list(THTA=c(0.5, -3.2, -1),
##' OMGA=list(ETA[1] ~ 1, ETA[2] ~ 2, ETA[3] ~ 1));
##'
##' ## Remove 0 concentrations (should be lloq)
##'
##' d <- theo_sd[theo_sd$EVID==0 & theo_sd$DV>0 | theo_sd$EVID>0,];
##'
##' fit1 <- foceiFit(d, inits, mypar2,mod,pred,err)
##'
##' ## you can also fit lognormal data with the objective function on the same scale
##'
##' errl <- function(){
##' return(lnorm(0.1))
##' }
##'
##' fit2 <- foceiFit(d, inits, mypar2,mod,pred,errl)
##'
##' ## You can also use the standard nlmixr functions to run FOCEi
##'
##' library(data.table);
##' datr <- Infusion_1CPT;
##' datr$EVID<-ifelse(datr$EVID==1,10101,datr$EVID)
##' datr<-data.table(datr)
##' datr<-datr[EVID!=2]
##' datro<-copy(datr)
##' datIV<-datr[AMT>0][,TIME:=TIME+AMT/RATE][,AMT:=-1*AMT]
##' datr<-rbind(datr,datIV)
##'
##' one.compartment.IV.model <- function(){
##' ini({ # Where initial conditions/variables are specified
##' # '<-' or '=' defines population parameters
##' # Simple numeric expressions are supported
##' lCl <- 1.6 #log Cl (L/hr)
##' lVc <- 4.5 #log V (L)
##' # Bounds may be specified by c(lower, est, upper), like NONMEM:
##' # Residuals errors are assumed to be population parameters
##' prop.sd <- 0.3
##' # Between subject variability estimates are specified by '~'
##' # Semicolons are optional
##' eta.Vc ~ 0.1 #IIV V
##' eta.Cl ~ 0.1; #IIV Cl
##' })
##' model({ # Where the model is specified
##' # The model uses the ini-defined variable names
##' Vc <- exp(lVc + eta.Vc)
##' Cl <- exp(lCl + eta.Cl)
##' # RxODE-style differential equations are supported
##' d / dt(centr) = -(Cl / Vc) * centr;
##' ## Concentration is calculated
##' cp = centr / Vc;
##' # And is assumed to follow proportional error estimated by prop.err
##' cp ~ prop(prop.sd)
##' })}
##'
##' fitIVp <- nlmixr(one.compartment.IV.model, datr, "focei");
##'
##' ## You can also use the Box-Cox Transform of both sides with
##' ## proportional error (Donse 2016)
##'
##' one.compartment.IV.model <- function(){
##' ini({ # Where initial conditions/variables are specified
##' ## '<-' or '=' defines population parameters
##' ## Simple numeric expressions are supported
##' lCl <- 1.6 #log Cl (L/hr)
##' lVc <- 4.5 #log V (L)
##' ## Bounds may be specified by c(lower, est, upper), like NONMEM:
##' ## Residuals errors are assumed to be population parameters
##' prop.err <- 0.3
##' add.err <- 0.01
##' lambda <- c(-2, 1, 2)
##' zeta <- c(0.1, 1, 10)
##' ## Between subject variability estimates are specified by '~'
##' ## Semicolons are optional
##' eta.Vc ~ 0.1 #IIV V
##' eta.Cl ~ 0.1; #IIV Cl
##' })
##' model({ ## Where the model is specified
##' ## The model uses the ini-defined variable names
##' Vc <- exp(lVc + eta.Vc)
##' Cl <- exp(lCl + eta.Cl)
##' ## RxODE-style differential equations are supported
##' d / dt(centr) = -(Cl / Vc) * centr;
##' ## Concentration is calculated
##' cp = centr / Vc;
##' ## And is assumed to follow proportional error estimated by prop.err
##' cp ~ pow(prop.err, zeta) + add(add.err) + boxCox(lambda)
##' ## This is proportional to the untransformed f; You can use the transformed f by using powT()
##' })}
##'
##' fitIVtbs <- nlmixr(one.compartment.IV.model, datr, "focei")
##'
##' ## If you want to use a variance normalizing distribution with
##' ## negative/positive data you can use the Yeo-Johnson transformation
##' ## as well. This is implemented by the yeoJohnson(lambda) function.
##' one.compartment.IV.model <- function(){
##' ini({ # Where initial conditions/variables are specified
##' ## '<-' or '=' defines population parameters
##' ## Simple numeric expressions are supported
##' lCl <- 1.6 #log Cl (L/hr)
##' lVc <- 4.5 #log V (L)
##' ## Bounds may be specified by c(lower, est, upper), like NONMEM:
##' ## Residuals errors are assumed to be population parameters
##' prop.err <- 0.3
##' delta <- c(0.1, 1, 10)
##' add.err <- 0.01
##' lambda <- c(-2, 1, 2)
##' ## Between subject variability estimates are specified by '~'
##' ## Semicolons are optional
##' eta.Vc ~ 0.1 #IIV V
##' eta.Cl ~ 0.1; #IIV Cl
##' })
##' model({ ## Where the model is specified
##' ## The model uses the ini-defined variable names
##' Vc <- exp(lVc + eta.Vc)
##' Cl <- exp(lCl + eta.Cl)
##' ## RxODE-style differential equations are supported
##' d / dt(centr) = -(Cl / Vc) * centr;
##' ## Concentration is calculated
##' cp = centr / Vc;
##' ## And is assumed to follow proportional error estimated by prop.err
##' cp ~ pow(prop.err, delta) + add(add.err) + yeoJohnson(lambda)
##' })}
##'
##' fitIVyj <- nlmixr(one.compartment.IV.model, datr, "focei")
##'
##' ## In addition to using L-BFGS-B for FOCEi (outer problem) you may
##' ## use other optimizers. An example is below
##'
##' one.cmt <- function() {
##' ini({
##' tka <- .44 # log Ka
##' tcl <- log(c(0, 2.7, 100)) # log Cl
##' tv <- 3.45 # log V
##' eta.ka ~ 0.6
##' eta.cl ~ 0.3
##' eta.v ~ 0.1
##' add.err <- 0.7
##' })
##' model({
##' ka <- exp(tka + eta.ka)
##' cl <- exp(tcl + eta.cl)
##' v <- exp(tv + eta.v)
##' linCmt() ~ add(add.err)
##' })
##' }
##'
##' fit <- nlmixr(one.cmt, theo_sd, "focei", foceiControl(outerOpt="bobyqa"))
##'
##' ## You may also make an arbitrary optimizer work by adding a wrapper function:
##'
##' newuoa0 <- function(par, fn, gr, lower = -Inf, upper = Inf, control = list(), ...){
##' ## The function requires par, fn, gr, lower, upper and control
##' ##
##' ## The par, fn, gr, lower and upper and sent to the function from nlmixr's focei.
##' ## The control is the foceiControl list
##' ##
##' ## The following code modifies the list control list for no warnings.
##' .ctl <- control;
##' if (is.null(.ctl$npt)) .ctl$npt <- length(par) * 2 + 1
##' ## nlmixr will print information this is to suppress the printing from the
##' ## optimizer
##' .ctl$iprint <- 0L;
##' .ctl <- .ctl[names(.ctl) %in% c("npt", "rhobeg", "rhoend", "iprint", "maxfun")];
##' ## This does not require gradient and is an unbounded optimization:
##' .ret <- minqa::newuoa(par, fn, control=.ctl);
##' ## The return statement must be a list with:
##' ## - x for the final parameter message
##' ## - message for a minimization message
##' ## - convergence for a convergence code
##' .ret$x <- .ret$par;
##' .ret$message <- .ret$msg;
##' .ret$convergence <- .ret$ierr
##' ## you can access the final list from the optimization by fit$optReturn
##' return(.ret);
##' }
##'
##' fit <- nlmixr(one.cmt, theo_sd, "focei", foceiControl(outerOpt=newuoa0))
##'
##' }
foceiFit <- function(data, ...) {
UseMethod("foceiFit")
}
##' @rdname foceiFit
##' @export
focei.fit <- foceiFit
##' @rdname foceiFit
##' @export
foceiFit.data.frame <- function(data, ...) {
call <- as.list(match.call(expand.dots = TRUE))[-1]
return(.collectWarnings(do.call(foceiFit.data.frame0, call, envir = parent.frame(1))))
}
.updateParFixed <- function(.ret) {
if (exists("uif", envir = .ret) & exists("shrink", envir = .ret)) {
.uif <- .ret$uif
.lab <- paste(.uif$ini$label[!is.na(.uif$ini$ntheta)])
.lab[.lab == "NA"] <- ""
.lab <- gsub(" *$", "", gsub("^ *", "", .lab))
.muRef <- unlist(.uif$mu.ref)
if (length(.muRef) > 0) {
.nMuRef <- names(.muRef)
.ome <- .ret$omega
.omegaFix <- as.data.frame(.ret$uif$ini)
.omegaFix <- .omegaFix[is.na(.omegaFix$ntheta), ]
.omegaFix <- setNames(.omegaFix$fix, paste(.omegaFix$name))
.muRef <- structure(as.vector(.nMuRef), .Names = as.vector(.muRef))
.logEta <- .uif$log.eta
.digs <- .ret$control$sigdig
.cvOnly <- TRUE
.sdOnly <- TRUE
.cvp <- lapply(row.names(.ret$popDfSig), function(x) {
.y <- .muRef[x]
if (is.na(.y)) {
return(data.frame(ch = " ", v = NA_real_))
}
.v <- .ome[.y, .y]
if (any(.y == .logEta)) {
.sdOnly <<- FALSE
return(data.frame(
ch = paste0(
ifelse(.omegaFix[.y], "fix(", ""),
formatC(signif(sqrt(exp(.v) - 1) * 100, digits = .digs),
digits = .digs, format = "fg", flag = "#"
),
ifelse(.omegaFix[.y], ")", "")
),
v = sqrt(exp(.v) - 1) * 100
))
} else {
.cvOnly <<- FALSE
return(data.frame(
ch = paste0(
ifelse(.omegaFix[.y], "fix(", ""),
formatC(signif(sqrt(.v), digits = .digs),
digits = .digs, format = "fg", flag = "#"
),
ifelse(.omegaFix[.y], ")", "")
),
v = .v
))
}
})
.cvp <- do.call("rbind", .cvp)
.shrink <- .ret$shrink
.errs <- as.data.frame(.uif$ini)
.errs <- paste(.errs[which(!is.na(.errs$err)), "name"])
.sh <- lapply(row.names(.ret$popDfSig), function(x) {
.y <- .muRef[x]
if (is.na(.y)) {
if (any(x == .errs)) {
.v <- .shrink[7, "IWRES"]
if (length(.v) != 0) {
return(data.frame(ch = " ", v = NA_real_))
}
if (is.null(.v)) {
return(data.frame(ch = " ", v = NA_real_))
}
if (is.na(.v)) {
return(data.frame(ch = " ", v = NA_real_))
}
} else {
return(" ")
}
} else {
.v <- .shrink[7, .y]
}
if (length(.v) != 1) {
return(data.frame(ch = " ", v = NA_real_))
}
if (is.na(.v)) {
return(data.frame(ch = " ", v = NA_real_))
}
.t <- ">"
if (.v < 0) {
} else if (.v < 20) {
.t <- "<"
} else if (.v < 30) {
.t <- "="
}
return(data.frame(
ch = sprintf("%s%%%s", formatC(signif(.v, digits = .digs),
digits = .digs, format = "fg", flag = "#"
), .t),
v = .v
))
})
.sh <- do.call("rbind", .sh)
.ret$parFixed <- data.frame(.ret$popDfSig, "BSD" = .cvp$ch, "Shrink(SD)%" = .sh$ch, check.names = FALSE)
.ret$parFixedDf <- data.frame(.ret$popDf, "BSD" = .cvp$v, "Shrink(SD)%" = .sh$v, check.names = FALSE)
.w <- which(names(.ret$parFixed) == "BSD")
if (length(.w) >= 1) {
names(.ret$parFixed)[.w] <- ifelse(.sdOnly, "BSV(SD)", ifelse(.cvOnly, "BSV(CV%)", "BSV(CV% or SD)"))
}
.w <- which(names(.ret$parFixedDf) == "BSD")
if (length(.w) >= 1) {
names(.ret$parFixedDf)[.w] <- ifelse(.sdOnly, "BSV(SD)", ifelse(.cvOnly, "BSV(CV%)", "BSV(CV% or SD)"))
}
if (!all(.lab == "")) {
.ret$parFixed <- data.frame(Parameter = .lab, .ret$parFixed, check.names = FALSE)
}
} else {
.ret$parFixed <- .ret$popDfSig
.ret$parFixedDf <- .ret$popDfSig
}
} else {
.ret$parFixed <- .ret$popDfSig
.ret$parFixedDf <- .ret$popDf
}
class(.ret$parFixed) <- c("nlmixrParFixed", "data.frame")
}
.thetaReset <- new.env(parent = emptyenv())
##' @rdname foceiFit
##' @export
foceiFit.data.frame0 <- function(data,
inits,
PKpars,
model = NULL,
pred = NULL,
err = NULL,
lower = -Inf,
upper = Inf,
fixed = NULL,
skipCov = NULL,
control = foceiControl(),
thetaNames = NULL,
etaNames = NULL,
etaMat = NULL,
...,
env = NULL,
keep=NULL,
drop=NULL) {
set.seed(control$seed)
.pt <- proc.time()
RxODE::.setWarnIdSort(FALSE)
on.exit(RxODE::.setWarnIdSort(TRUE))
loadNamespace("n1qn1")
if (!RxODE::rxIs(control, "foceiControl")) {
control <- do.call(foceiControl, control)
}
if (is.null(env)) {
.ret <- new.env(parent = emptyenv())
} else {
.ret <- env
}
.ret$origData <- data
.ret$etaNames <- etaNames
.ret$thetaFixed <- fixed
.ret$control <- control
.ret$control$focei.mu.ref <- integer(0)
if (is(model, "RxODE") || is(model, "character")) {
.ret$ODEmodel <- TRUE
if (class(pred) != "function") {
stop("pred must be a function specifying the prediction variables in this model.")
}
} else {
## Fixme
.ret$ODEmodel <- TRUE
model <- RxODE::rxGetLin(PKpars)
pred <- eval(parse(text = "function(){return(Central);}"))
}
.square <- function(x) x * x
.ret$diagXformInv <- c("sqrt" = ".square", "log" = "exp", "identity" = "identity")[control$diagXform]
if (is.null(err)) {
err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}")))
}
.covNames <- .parNames <- c()
.ret$adjLik <- control$adjLik
.mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0
if (!exists("noLik", envir = .ret)) {
.atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))
.rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))
.ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))
.ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))
.ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err,
grad = (control$derivMethod == 2L),
pred.minus.dv = TRUE, sum.prod = control$sumProd,
theta.derivs = FALSE, optExpression = control$optExpression,
interaction = (control$interaction == 1L),
only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp
)
if (!is.null(.ret$model$inner)) {
.atol <- c(.atol, rep(
control$atolSens,
length(RxODE::rxModelVars(.ret$model$inner)$state) -
length(.atol)
))
.rtol <- c(.rtol, rep(
control$rtolSens,
length(RxODE::rxModelVars(.ret$model$inner)$state) -
length(.rtol)
))
.ret$control$rxControl$atol <- .atol
.ret$control$rxControl$rtol <- .rtol
.ssAtol <- c(.ssAtol, rep(
control$ssAtolSens,
length(RxODE::rxModelVars(.ret$model$inner)$state) -
length(.ssAtol)
))
.ssRtol <- c(.ssRtol, rep(
control$ssRtolSens,
length(RxODE::rxModelVars(.ret$model$inner)$state) -
length(.ssRtol)
))
.ret$control$rxControl$ssAtol <- .ssAtol
.ret$control$rxControl$ssRtol <- .ssRtol
}
.covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)
.covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1]
colnames(data) <- sapply(names(data), function(x) {
if (any(x == .covNames)) {
return(x)
} else {
return(toupper(x))
}
})
.lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only))
if (length(.lhs) > 0) {
.covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1]
}
if (length(.covNames) > 0) {
if (!all(.covNames %in% names(data))) {
message("Model:")
RxODE::rxCat(.ret$model$pred.only)
message("Needed Covariates:")
nlmixrPrint(.covNames)
stop("Not all the covariates are in the dataset.")
}
message("Needed Covariates:")
print(.covNames)
}
.extraPars <- .ret$model$extra.pars
} else {
if (.ret$noLik) {
.atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state))
.rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state))
.ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err,
grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd,
theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE,
only.numeric = TRUE, addProp = control$addProp
)
if (!is.null(.ret$model$inner)) {
.atol <- c(.atol, rep(
control$atolSens,
length(RxODE::rxModelVars(.ret$model$inner)$state) -
length(.atol)
))
.rtol <- c(.rtol, rep(
control$rtolSens,
length(RxODE::rxModelVars(.ret$model$inner)$state) -
length(.rtol)
))
.ret$control$rxControl$atol <- .atol
.ret$control$rxControl$rtol <- .rtol
}
.covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only)
.covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1]
colnames(data) <- sapply(names(data), function(x) {
if (any(x == .covNames)) {
return(x)
} else {
return(toupper(x))
}
})
.lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only))
if (length(.lhs) > 0) {
.covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1]
}
if (length(.covNames) > 0) {
if (!all(.covNames %in% names(data))) {
message("Model:")
RxODE::rxCat(.ret$model$pred.only)
message("Needed Covariates:")
nlmixrPrint(.covNames)
stop("Not all the covariates are in the dataset.")
}
message("Needed Covariates:")
print(.covNames)
}
.extraPars <- .ret$model$extra.pars
} else {
.extraPars <- NULL
}
}
.ret$skipCov <- skipCov
if (is.null(skipCov)) {
if (is.null(fixed)) {
.tmp <- rep(FALSE, length(inits$THTA))
} else {
if (length(fixed) < length(inits$THTA)) {
.tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed)))
} else {
.tmp <- fixed[1:length(inits$THTA)]
}
}
if (exists("uif", envir = .ret)) {
.uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]
.uifErr <- sapply(.uifErr, function(x) {
if (is.na(x)) {
return(FALSE)
}
return(!any(x == c("pow2", "tbs", "tbsYj")))
})
.tmp <- (.tmp | .uifErr)
}
.ret$skipCov <- c(
.tmp,
rep(TRUE, length(.extraPars))
)
.ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref
}
if (is.null(.extraPars)) {
.nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)))
} else {
.nms <- c(
sprintf("THETA[%s]", seq_along(inits$THTA)),
sprintf("ERR[%s]", seq_along(.extraPars))
)
}
if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) {
.nms <- thetaNames
}
.ret$thetaNames <- .nms
.thetaReset$thetaNames <- .nms
if (length(lower) == 1) {
lower <- rep(lower, length(inits$THTA))
} else if (length(lower) != length(inits$THTA)) {
print(inits$THTA)
print(lower)
stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")
}
if (length(upper) == 1) {
upper <- rep(upper, length(inits$THTA))
} else if (length(lower) != length(inits$THTA)) {
stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")
}
if (!is.null(.extraPars)) {
.ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars))
if (length(.ret$model$extra.pars) > 0) {
inits$THTA <- c(inits$THTA, .ret$model$extra.pars)
.lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars))
.upperErr <- rep(Inf, length(.ret$model$extra.pars))
lower <- c(lower, .lowerErr)
upper <- c(upper, .upperErr)
}
}
if (is.null(data$ID)) stop('"ID" not found in data')
if (is.null(data$DV)) stop('"DV" not found in data')
if (is.null(data$EVID)) data$EVID <- 0
if (is.null(data$AMT)) data$AMT <- 0
## Make sure they are all double amounts.
for (.v in c("TIME", "AMT", "DV", .covNames)) {
data[[.v]] <- as.double(data[[.v]])
}
.ret$dataSav <- data
.ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)]
.w <- which(tolower(names(data)) == "limit")
.limitName <- NULL
if (length(.w) == 1L) {
.limitName <- names(data)[.w]
}
.censName <- NULL
.w <- which(tolower(names(data)) == "cens")
if (length(.w) == 1L) {
.censName <- names(data[.w])
}
data <- data[
data$EVID == 0 | data$EVID == 2,
c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)
]
## keep the covariate names the same as in the model
.w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))
names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) # needed in ev
if (.mixed) {
.lh <- .parseOM(inits$OMGA)
.nlh <- sapply(.lh, length)
.osplt <- rep(1:length(.lh), .nlh)
.lini <- list(inits$THTA, unlist(.lh))
.nlini <- sapply(.lini, length)
.nsplt <- rep(1:length(.lini), .nlini)
.om0 <- .genOM(.lh)
if (length(etaNames) == dim(.om0)[1]) {
.ret$etaNames <- .ret$etaNames
} else {
.ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))
}
.ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)
.ret$xType <- .ret$rxInv$xType
.om0a <- .om0
.om0a <- .om0a / control$diagOmegaBoundLower
.om0b <- .om0
.om0b <- .om0b * control$diagOmegaBoundUpper
.om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)
.om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)
.omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag)
.omdf$lower <- with(.omdf, ifelse(a > b, b, a))
.omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower))
.omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower))
.omdf$upper <- with(.omdf, ifelse(a < b, b, a))
.omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper))
.omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper))
.ret$control$nomega <- length(.omdf$lower)
.ret$control$neta <- sum(.omdf$diag)
.ret$control$ntheta <- length(lower)
.ret$control$nfixed <- sum(fixed)
lower <- c(lower, .omdf$lower)
upper <- c(upper, .omdf$upper)
} else {
.ret$control$nomega <- 0
.ret$control$neta <- 0
.ret$xType <- -1
.ret$control$ntheta <- length(lower)
.ret$control$nfixed <- sum(fixed)
}
.ret$lower <- lower
.ret$upper <- upper
.ret$thetaIni <- inits$THTA
.scaleC <- double(length(lower))
if (is.null(control$scaleC)) {
.scaleC <- rep(NA_real_, length(lower))
} else {
.scaleC <- as.double(control$scaleC)
if (length(lower) > length(.scaleC)) {
.scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC)))
} else if (length(lower) < length(.scaleC)) {
.scaleC <- .scaleC[seq(1, length(lower))]
warning("scaleC control option has more options than estimated population parameters, please check.")
}
}
.ret$scaleC <- .scaleC
if (exists("uif", envir = .ret)) {
.ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")]
for (.i in seq_along(.ini$err)) {
if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {
if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) {
.ret$scaleC[.ini$ntheta[.i]] <- 1
} else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) {
.ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i])
}
}
}
for (.i in .ini$model$extraProps$powTheta) {
if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 ## Powers are log-scaled
}
.ini <- as.data.frame(.ret$uif$ini)
for (.i in .ini$model$extraProps$factorial) {
if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1 / digamma(.ini$est[.i] + 1))
}
for (.i in .ini$model$extraProps$gamma) {
if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1 / digamma(.ini$est[.i]))
}
for (.i in .ini$model$extraProps$log) {
if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i])
}
for (.i in .ret$logitThetas) {
.b <- .ret$logitThetasLow[.i]
.c <- .ret$logitThetasHi[.i]
.a <- .ini$est[.i]
if (is.na(.ret$scaleC[.i])) {
.ret$scaleC[.i] <- 1.0 * (-.b + .c) * exp(-.a) / ((1.0 + exp(-.a))^2 * (.b + 1.0 * (-.b + .c) / (1.0 + exp(-.a))))
}
}
## for (.i in .ini$model$extraProp$logit) {
## ## logit(a,b,c) ->
## ##-1.0*(-b + c)/((a - b)^2*(-1.0 + 1.0*(-b + c)/(a - b))*log(-1.0 + 1.0*(-b + c)/(a - b)))
## }
## FIXME: needs to be based on actual initial values in sin because typically change to correct scale
## Ctime is also usually used for circadian rhythm models
## for (.i in .ini$model$extraProps$sin){
## if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- fabs(tan(.ini$est[.i]));
## }
## for (.i in .ini$model$extraProps$cos){
## if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- fabs(1 / tan(.ini$est[.i]));
## }
## for (.i in .ini$model$extraProps$tan){
## if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- fabs(2 * sin(2 * .ini$est[.i]));
## }
}
names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni))
if (is.null(etaMat) & !is.null(control$etaMat)) {
.ret$etaMat <- control$etaMat
} else {
.ret$etaMat <- etaMat
}
.ret$setupTime <- (proc.time() - .pt)["elapsed"]
if (exists("uif", envir = .ret)) {
.tmp <- .ret$uif$logThetasList
.ret$logThetas <- .tmp[[1]]
.ret$logThetasF <- .tmp[[2]]
.tmp <- .ret$uif$logitThetasList
.ret$logitThetas <- .tmp[[1]]
.ret$logitThetasF <- .tmp[[2]]
.tmp <- .ret$uif$logitThetasListLow
.ret$logitThetasLow <- .tmp[[1]]
.ret$logitThetasLowF <- .tmp[[2]]
.tmp <- .ret$uif$logitThetasListHi
.ret$logitThetasHi <- .tmp[[1]]
.ret$logitThetasHiF <- .tmp[[2]]
.tmp <- .ret$uif$probitThetasList
.ret$probitThetas <- .tmp[[1]]
.ret$probitThetasF <- .tmp[[2]]
.tmp <- .ret$uif$probitThetasListLow
.ret$probitThetasLow <- .tmp[[1]]
.ret$probitThetasLowF <- .tmp[[2]]
.tmp <- .ret$uif$probitThetasListHi
.ret$probitThetasHi <- .tmp[[1]]
.ret$probitThetasHiF <- .tmp[[2]]
} else {
.ret$logThetasF <- integer(0)
.ret$logitThetasF <- integer(0)
.ret$logitThetasHiF <- numeric(0)
.ret$logitThetasLowF <- numeric(0)
.ret$logitThetas <- integer(0)
.ret$logitThetasHi <- numeric(0)
.ret$logitThetasLow <- numeric(0)
.ret$probitThetasF <- integer(0)
.ret$probitThetasHiF <- numeric(0)
.ret$probitThetasLowF <- numeric(0)
.ret$probitThetas <- integer(0)
.ret$probitThetasHi <- numeric(0)
.ret$probitThetasLow <- numeric(0)
}
if (exists("noLik", envir = .ret)) {
if (!.ret$noLik) {
.ret$.params <- c(
sprintf("THETA[%d]", seq_along(.ret$thetaIni)),
sprintf("ETA[%d]", seq(1, dim(.om0)[1]))
)
.ret$.thetan <- length(.ret$thetaIni)
.ret$nobs <- sum(data$EVID == 0)
}
}
.ret$control$printTop <- TRUE
.ret$control$nF <- 0
.est0 <- .ret$thetaIni
if (!is.null(.ret$model$pred.nolhs)) {
.ret$control$predNeq <- length(.ret$model$pred.nolhs$state)
} else {
.ret$control$predNeq <- 0L
}
.fitFun <- function(.ret) {
this.env <- environment()
assign("err", "theta reset", this.env)
while (this.env$err == "theta reset") {
assign("err", "", this.env)
.ret0 <- tryCatch(
{
foceiFitCpp_(.ret)
},
error = function(e) {
if (regexpr("theta reset", e$message) != -1) {
assign("zeroOuter", FALSE, this.env)
assign("zeroGrad", FALSE, this.env)
if (regexpr("theta reset0", e$message) != -1) {
assign("zeroGrad", TRUE, this.env)
} else if (regexpr("theta resetZ", e$message) != -1) {
assign("zeroOuter", TRUE, this.env)
}
assign("err", "theta reset", this.env)
} else {
assign("err", e$message, this.env)
}
}
)
if (this.env$err == "theta reset") {
.nm <- names(.ret$thetaIni)
.ret$thetaIni <- setNames(.thetaReset$thetaIni + 0.0, .nm)
.ret$rxInv$theta <- .thetaReset$omegaTheta
.ret$control$printTop <- FALSE
.ret$etaMat <- .thetaReset$etaMat
.ret$control$etaMat <- .thetaReset$etaMat
.ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations
.ret$control$nF <- .thetaReset$nF
.ret$control$gillRetC <- .thetaReset$gillRetC
.ret$control$gillRet <- .thetaReset$gillRet
.ret$control$gillRet <- .thetaReset$gillRet
.ret$control$gillDf <- .thetaReset$gillDf
.ret$control$gillDf2 <- .thetaReset$gillDf2
.ret$control$gillErr <- .thetaReset$gillErr
.ret$control$rEps <- .thetaReset$rEps
.ret$control$aEps <- .thetaReset$aEps
.ret$control$rEpsC <- .thetaReset$rEpsC
.ret$control$aEpsC <- .thetaReset$aEpsC
.ret$control$c1 <- .thetaReset$c1
.ret$control$c2 <- .thetaReset$c2
if (this.env$zeroOuter) {
message("Posthoc reset")
.ret$control$maxOuterIterations <- 0L
} else if (this.env$zeroGrad) {
message("Theta reset (zero gradient values); Switch to bobyqa")
RxODE::rxReq("minqa")
.ret$control$outerOptFun <- .bobyqa
.ret$control$outerOpt <- -1L
} else {
message("Theta reset (ETA drift)")
}
}
}
if (this.env$err != "") {
stop(this.env$err)
} else {
return(.ret0)
}
}
.ret0 <- try(.fitFun(.ret))
.n <- 1
while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) {
## Maybe change scale?
message(sprintf("Restart %s", .n))
.ret$control$nF <- 0
.estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n
.estNew <- sapply(
seq_along(.est0),
function(.i) {
if (.ret$thetaFixed[.i]) {
return(.est0[.i])
} else if (.estNew[.i] < lower[.i]) {
return(lower + (.Machine$double.eps)^(1 / 7))
} else if (.estNew[.i] > upper[.i]) {
return(upper - (.Machine$double.eps)^(1 / 7))
} else {
return(.estNew[.i])
}
}
)
.ret$thetaIni <- .estNew
.ret0 <- try(.fitFun(.ret))
.n <- .n + 1
}
if (inherits(.ret0, "try-error")) stop("Could not fit data.")
.ret <- .ret0
if (exists("parHistData", .ret)) {
.tmp <- .ret$parHistData
.tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"]
.iter <- .tmp$iter
.tmp <- .tmp[, names(.tmp) != "iter"]
.ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter)
names(.ret$parHistStacked) <- c("val", "par", "iter")
.ret$parHist <- data.frame(iter = .iter, .tmp)
}
if (.mixed) {
.etas <- .ret$ranef
.thetas <- .ret$fixef
.pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)
.ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID))
.updateParFixed(.ret)
} else {
.updateParFixed(.ret)
}
if (!exists("table", .ret)) {
.ret$table <- tableControl()
}
if (control$calcTables) {
.ret <- addTable(.ret, updateObject="no", keep=keep, drop=drop, table=.ret$table)
}
.ret
}
##' @export
`$.nlmixrFitCore` <- function(obj, arg, exact = FALSE) {
.env <- obj
if (arg == "md5") {
return(.nlmixrMd5(obj))
} else if (arg == "posthoc") {
return(nlmixrPosthoc(obj))
} else if (arg == "notes") {
return(.notesFit(obj))
} else if (any(arg == c(
"logLik", "value", "obf", "ofv",
"objf", "OBJF", "objective", "AIC",
"BIC"
))) {
if (!is.null(obj$saem)) {
.tmp <- obj$saem
.curObj <- get("objective", .env)
if (is.na(.curObj)) {
.nnodes <- 3
if (exists("nnodes.gq", .env)) {
.nnodes <- .env$nnodes.gq
}
.nsd <- 1.6
if (exists("nsd.gq", .env)) {
.nsd <- .env$nsd.gq
}
if (.nnodes == 1) {
.tmp <- try(setOfv(obj, paste0("laplace", .nsd)), silent = TRUE)
} else {
.tmp <- try(setOfv(obj, paste0("gauss", .nnodes, "_", .nsd)), silent = TRUE)
}
if (inherits(.tmp, "try-error")) {
message("gaussian quadrature failed, changed to focei")
setOfv(obj, "focei")
}
}
}
}
if (any(arg == c("value", "obf", "ofv"))) arg <- "objf"
if (arg == "sigma") {
return(.sigma(obj))
}
if (arg == "coefficients") {
return(list(
fixed = fixef(obj),
random = ranef(obj)
))
}
if (arg == "par.hist") arg <- "parHist"
if (arg == "par.hist.stacked") arg <- "parHistStacked"
if (arg == "omega.R") arg <- "omegaR"
if (arg == "par.fixed") arg <- "parFixed"
if (arg == "eta") arg <- "ranef"
if (arg == "theta") arg <- "fixef"
if (arg == "varFix") arg <- "cov"
if (arg == "thetaMat") arg <- "cov"
if (arg == "seed" && exists("saem", .env)) {
return(attr(.env$saem, "saem.cfg")$seed)
}
if (arg == "saem.cfg" && exists("saem", .env)) {
return(attr(.env$saem, "saem.cfg"))
}
if (exists(arg, envir = .env)) {
return(get(arg, envir = .env))
}
if (arg == "env") {
return(.env)
}
if (arg == "condition") {
.objDf <- .env$objDf
#$objDf[,"Condition Number"]
if (any(names(.objDf) == "Condition Number")) {
.cn <- .objDf[, "Condition Number"]
.cn <- .cn[!is.na(.cn)]
return(.cn)
}
return(NULL)
}
if (exists("uif", .env)) {
.uif <- .env$uif
if (arg == "modelName") arg <- "model.name"
if (arg == "dataName") arg <- "data.name"
.ret <- `$.nlmixrUI`(.uif, arg)
if (!is.null(.ret)) {
return(.ret)
}
.env2 <- `$.nlmixrUI`(.uif, "env")
if (exists(arg, envir = .env2)) {
return(get(arg, envir = .env2))
}
}
if (arg == "simInfo") {
return(.simInfo(obj))
}
}
##' @export
`$.nlmixrFitCoreSilent` <- `$.nlmixrFitCore`
##' @export
`$.nlmixrFitData` <- function(obj, arg, exact = FALSE) {
.ret <- obj[[arg]]
if (arg == "md5") {
return(.nlmixrMd5(obj))
} else if (is.null(.ret)) {
if (arg == "posthoc") {
return(nlmixrPosthoc(obj))
}
.cls <- class(obj)
.env <- attr(.cls, ".foceiEnv")
.ret <- `$.nlmixrFitCore`(.env, arg, exact)
}
return(.ret)
}
##' Return composite nlme/focei to nlme
##'
##' @param x nlme/focei object from common UI.
##' @return nlme object or NULL
##' @author Matthew L. Fidler
##' @keywords internal
##' @export
as.nlme <- function(object, ...) {
.ret <- object$nlme
if (is.null(.ret)) stop("Cannot convert to nlme.")
return(.ret)
}
##' Return composite saem/focei to saem
##'
##' @param x saem/focei object from common UI.
##' @return saem object or NULL
##' @author Matthew L. Fidler
##' @keywords internal
##' @export
as.saem <- function(x) {
.ret <- x$saem
if (is.null(.ret)) stop("Cannot convert to saem.")
return(.ret)
}
##' @importFrom nlme VarCorr
##' @export
VarCorr.nlmixrFitCore <- function(x, sigma = NULL, ...) {
.ret <- x$nlme
if (is.null(.ret)) {
.var <- diag(x$omega)
.ret <- data.frame(
Variance = .var, StdDev = sqrt(.var),
row.names = names(.var)
)
.ret <- .ret[!is.na(.ret[, 1]), ]
return(.ret)
} else {
VarCorr(.ret, ...)
}
}
##' @export
VarCorr.nlmixrFitCoreSilent <- VarCorr.nlmixrFitCore
.sigma <- function(x) {
.ret <- x$nlme
if (is.null(.ret)) {
if (exists("uif", envir = x$env)) {
.df <- as.data.frame(x$uif$ini)
.errs <- paste(.df[which(!is.na(.df$err)), "name"])
return(fixef(x)[.errs])
}
} else {
return(.ret$sigma)
}
}
##' @export
str.nlmixrFitData <- function(object, ...) {
NextMethod(object)
.env <- object$env
## cat(" $ par.hist : Parameter history (if available)\n")
## cat(" $ par.hist.stacked : Parameter history in stacked form for easy plotting (if available)\n")
cat(" $ omega : Omega matrix\n")
cat(" $ omegaR : Omega Correlation matrix\n")
cat(" $ shrink : Shrinkage table, includes skewness, kurtosis, and eta p-values\n")
cat(" $ parFixed : Fixed Effect Parameter Table\n")
cat(" $ theta : Fixed Parameter Estimates\n")
cat(" $ eta : Individual Parameter Estimates\n")
cat(" $ seed : Seed (if applicable)\n")
cat(" $ coefficients : Fixed and random coefficients\n")
if (exists("uif", envir = object$env)) {
cat(" $ meta : Model meta information environment\n")
cat(" $ modelName : Model name (from R function)\n")
cat(" $ dataName : Name of R data input\n")
cat(" $ simInfo : RxODE list for simulation\n")
cat(" $ sigma : List of sigma components and their values\n")
}
}
##' Extract residuals from the FOCEI fit
##'
##' @param object focei.fit object
##' @param ... Additional arguments
##' @param type Residuals type fitted.
##' @return residuals
##' @author Matthew L. Fidler
##' @export
residuals.nlmixrFitData <- function(object, ..., type = c("ires", "res", "iwres", "wres", "cwres", "cpred", "cres")) {
return(object[, toupper(match.arg(type))])
}
##' Return the objective function
##'
##' @param x object to return objective function value
##' @param type Objective function type value to retrieve or add.
##'
##' \itemize{
##'
##' \item{focei} For most models you can specify "focei" and it will
##' add the focei objective function.
##'
##' \item{nlme} This switches/chooses the nlme objective function if
##' applicable. This objective function cannot be added if it
##' isn't present.
##'
##' \item{fo} FO objective function value. Cannot be generated
##'
##' \item{foce} FOCE object function value. Cannot be generated
##'
##' \item{laplace#} This adds/retrieves the Laplace objective function value.
##' The \code{#} represents the number of standard deviations
##' requested when expanding the Gaussian Quadrature. This can
##' currently only be used with saem fits.
##'
##' \item{gauss#.#} This adds/retrieves the Gaussian Quadrature
##' approximation of the objective function. The first number is the
##' number of nodes to use in the approximation. The second number is
##' the number of standard deviations to expand upon.
##'
##' }
##'
##' @param ... Other arguments sent to ofv for other methods.
##'
##' @return Objective function value
##'
##' @author Matthew Fidler
##'
##' @export
ofv <- function(x, type, ...) {
UseMethod("ofv")
}
##' @export
ofv.nlmixrFitData <- function(x, type, ...) {
if (!missing(type)) setOfv(x, type)
return(x$ofv)
}
##' @export
logLik.nlmixrFitData <- function(object, ...) {
.objName <- substitute(object)
.lst <- list(...)
if (!is.null(.lst$type)) {
.new <- setOfv(object, .lst$type)
.parent <- globalenv()
.bound <- do.call("c", lapply(ls(.parent, all.names = TRUE), function(.cur) {
if (.cur == .objName && identical(.parent[[.cur]]$env, object$env)) {
return(.cur)
}
return(NULL)
}))
if (length(.bound) == 1) {
if (exists(.bound, envir = .parent)) {
assign(.bound, .new, envir = .parent)
}
}
return(get("logLik", .new$env))
} else {
return(object$logLik)
}
}
##' @export
logLik.nlmixrFitCore <- function(object, ...) {
object$logLik
}
##' @export
nobs.nlmixrFitCore <- function(object, ...) {
object$nobs
}
##' @export
vcov.nlmixrFitCore <- function(object, ...) {
object$cov
}
##' This gets the parsed data in the lower-level manner that nlmixr expects.
##'
##' @param object nlmixr Object
##'
##' @return Gets the parsed data
##'
##' @export
##'
##' @author Matthew L. Fidler
##' @keywords internal
.nmGetData <- function(object, keep=NULL) {
if (is.null(keep)) keep <- character(0)
.uif <- object$uif
.tmp <- deparse(body(.uif$theta.pars))[-1]
.tmp <- .tmp[-length(.tmp)]
return(RxODE::etTrans(object$origData, paste(paste(.tmp, collapse = "\n"), "\n", .uif$rxode), TRUE, TRUE, TRUE, keep=keep))
}
##' @export
getData.nlmixrFitCore <- function(object) {
object$origData
}
##' @export
ranef.nlmixrFitCore <- function(object, ...) {
object$ranef
}
##' @export
fixef.nlmixrFitCore <- function(object, ...) {
object$fixef
}
##' @export
fixef.nlmixrFitCoreSilent <- fixef.nlmixrFitCore
##' @export
ranef.nlmixrFitCoreSilent <- ranef.nlmixrFitCore
##' @export
getData.nlmixrFitCoreSilent <- getData.nlmixrFitCore
##' @export
logLik.nlmixrFitCoreSilent <- logLik.nlmixrFitCore
##' @export
nobs.nlmixrFitCoreSilent <- nobs.nlmixrFitCore
##' @export
vcov.nlmixrFitCoreSilent <- vcov.nlmixrFitCore
##' @export
`$.nlmixrGill83` <- function(obj, arg, exact = FALSE) {
.ret <- obj[[arg]]
if (is.null(.ret)) {
.cls <- class(obj)
.lst <- attr(.cls, ".nlmixrGill")
return(.lst[[arg]])
}
return(.ret)
}
##' Get a posthoc estimate of x
##'
##' @param x nlmixr object
##' @param ... other arguments
##'
##' @return nlmixr fit object with possibly a new set of estimates
##'
##' @export
##' @keywords internal
nlmixrPosthoc <- function(x, ...) {
UseMethod("nlmixrPosthoc")
}
##' @export
nlmixrPosthoc.default <- function(x, ...) {
.posthoc <- (x$control$maxOuterIterations == 0L & x$control$maxInnerIterations > 0L)
.posthoc <- ifelse(.posthoc, paste0(ifelse(x$method == "FO",
ifelse(RxODE::rxIs(x, "nlmixrFitData"),
paste0(
" estimation with ", crayon::bold$yellow("FOCE"),
gsub(rex::rex(any_spaces, "(", anything, ")"), "", x$extra),
crayon::bold(" posthoc")
),
""
),
crayon::bold(" posthoc")
), " estimation"), " fit")
return(.posthoc)
}
.fmt3 <- function(name, bound, access, extra = "",
on = c(TRUE, TRUE)) {
if (length(access) == 1) {
on <- on[1]
}
cat(cli::cli_format_method({
cli::cli_rule(paste0(
crayon::bold(name), " (", extra,
paste(crayon::bold$blue(paste0(ifelse(on, crayon::yellow(bound), ""), "$", access)), collapse = " or "), "):"
))
}), sep = "\n")
}
.notesFit <- function(x) {
.parent <- globalenv()
.bound2 <- do.call("c", lapply(ls(.parent), function(.cur) {
if (identical(.parent[[.cur]], x)) {
return(.cur)
}
return(NULL)
}))
if (length(.bound2) > 0) {
.bound <- .bound2[order(sapply(.bound2, nchar))]
.bound <- .bound[1]
} else {
.bound <- ""
}
.c <- c(paste0(
" Covariance Type (", .bound, "$covMethod): ",
x$covMethod
))
if (is.na(get("objective", x$env))) {
.c <- c(
.c,
"Missing Objective function; Can add by:",
sprintf(
" Gaussian/Laplacian Likelihoods: AIC(%s) or %s etc.",
.bound, .bound, "$objf"
),
sprintf(
" FOCEi CWRES & Likelihoods: addCwres(%s)",
.bound
)
)
}
if (x$message != "") {
.c <- c(
.c, paste0(" Minimization message (", .bound, "$message): "),
paste0(" ", x$message)
)
if (x$message == "false convergence (8)") {
.c <- c(
.c, " In an ODE system, false convergence may mean \"useless\" evaluations were performed.",
" See https://tinyurl.com/yyrrwkce",
" It could also mean the convergence is poor, check results before accepting fit",
" You may also try a good derivative free optimization:",
" nlmixr(...,control=list(outerOpt=\"bobyqa\"))"
)
}
}
.c
}
## FIXME fitted?
focei.eta.nlmixrFitCore <- function(object, ...) {
.uif <- object$uif
## Reorder based on translation
.df <- as.data.frame(.uif$ini)
.eta <- .df[!is.na(.df$neta1), ]
.len <- length(.eta$name)
.curOme <- object$omega
.curLhs <- character()
.curRhs <- numeric()
.ome <- character()
for (.i in seq_along(.eta$name)) {
.lastBlock <- FALSE
if (.i == .len) {
.lastBlock <- TRUE
} else if (.eta$neta1[.i + 1] == .eta$neta2[.i + 1]) {
.lastBlock <- TRUE
}
if (.eta$neta1[.i] == .eta$neta2[.i]) {
.curLhs <- c(.curLhs, sprintf("ETA[%d]", .eta$neta1[.i]))
.curRhs <- c(.curRhs, .curOme[.eta$neta1[.i], .eta$neta2[.i]])
if (.lastBlock) {
.ome[length(.ome) + 1] <- sprintf(
"%s ~ %s", paste(.curLhs, collapse = " + "),
paste(deparse(.curRhs), collapse = " ")
)
.curLhs <- character()
.curRhs <- numeric()
}
} else {
.curRhs <- c(.curRhs, .curOme[.eta$neta1[.i], .eta$neta2[.i]])
}
}
.ome <- eval(parse(text = sprintf("list(%s)", paste(.ome, collapse = ","))))
return(.ome)
}
##' @export
focei.eta.nlmixrFitCoreSilent <- focei.eta.nlmixrFitCore
##' Convert fit to FOCEi style fit
##'
##' @param object Fit object to convert to FOCEi-style fit.
##' @param uif Unified Interface Function
##' @param pt Proc time object
##' @param ... Other Parameters
##' @param data The data to pass to the FOCEi translation.
##' @param calcResid A boolean to indicate if the CWRES residuals
##' should be calculated
##' @param nobs2 Number of observations without EVID=2
##' @param IDlabel labels for the ID column; used to change the IDs
##' back to their normal valuesr
##' @param table A list of table options
##' @inheritParams foceiFit
##' @inheritParams addNpde
##' @return A FOCEi fit style object.
##' @author Matthew L. Fidler
as.focei <- function(object, uif, pt = proc.time(), ..., data, calcResid = TRUE,
table=tableControl(), IDlabel=NULL) {
UseMethod("as.focei")
}
##' Get the FOCEi theta or eta specification for model.
##'
##' @param object Fit object
##' @param uif User interface function or object
##' @param ... Other parameters
##' @return List for the OMGA list in FOCEi
##' @author Matthew L. Fidler
focei.eta <- function(object, uif, ...) {
UseMethod("focei.eta")
}
##' Get the FOCEi theta specification for the model
##'
##' @inheritParams focei.eta
##' @return Parameter estimates for Theta
focei.theta <- function(object, uif, ...) {
UseMethod("focei.theta")
}
##' Cox Box, Yeo Johnson and inverse transformation
##'
##' @param x data to transform
##' @param lambda Cox-box lambda parameter
##' @return Cox-Box Transformed Data
##' @author Matthew L. Fidler
##' @examples
##'
##' boxCox(1:3,1) ## Normal
##' iBoxCox(boxCox(1:3,1))
##'
##' boxCox(1:3,0) ## Log-Normal
##' iBoxCox(boxCox(1:3,0),0)
##'
##' boxCox(1:3,0.5) ## lambda=0.5
##' iBoxCox(boxCox(1:3,0.5),0.5)
##'
##' yeoJohnson(seq(-3,3),1) ## Normal
##' iYeoJohnson(yeoJohnson(seq(-3,3),1))
##'
##' yeoJohnson(seq(-3,3),0)
##' iYeoJohnson(yeoJohnson(seq(-3,3),0),0)
##' @export
boxCox <- function(x, lambda = 1) {
.Call(`_nlmixr_boxCox_`, x, lambda, 0L)
}
##' @rdname boxCox
##' @export
iBoxCox <- function(x, lambda = 1) {
.Call(`_nlmixr_iBoxCox_`, x, lambda, 0L)
}
##' @rdname boxCox
##' @export
yeoJohnson <- function(x, lambda = 1) {
.Call(`_nlmixr_boxCox_`, x, lambda, 1L)
}
##' @rdname boxCox
##' @export
iYeoJohnson <- function(x, lambda = 1) {
.Call(`_nlmixr_iBoxCox_`, x, lambda, 1L)
}
.setSaemExtra <- function(.env, type) {
.uif <- .env$uif
.txt <- paste0("(", crayon::italic(ifelse(is.null(.uif$nmodel$lin.solved), ifelse(.uif$predSys, "PRED", "ODE"), "Solved")), "); ")
if (tolower(type) == "focei") {
.txt <- paste0(.txt, crayon::blurred$italic("OBJF by FOCEi approximation"))
} else if (tolower(type) == "foce") {
.txt <- paste0(.txt, crayon::blurred$italic("OBJF by FOCE approximation"))
} else if (tolower(type) == "fo") {
.txt <- paste0(.txt, crayon::blurred$italic("OBJF by FO approximation"))
} else if (type == "") {
.txt <- paste0(.txt, crayon::blurred$italic("OBJF not calculated"))
} else {
.reg <- rex::rex(start, "laplace", capture(.regNum), end)
.regG <- rex::rex(start, "gauss", capture(.regNum), "_", capture(.regNum), end)
if (regexpr(.reg, type, perl = TRUE) != -1) {
.nnode <- 1
.nsd <- as.numeric(sub(.reg, "\\1", type, perl = TRUE))
} else if (regexpr(.regG, type, perl = TRUE) != -1) {
.nnode <- as.numeric(sub(.regG, "\\1", type, perl = TRUE))
.nsd <- as.numeric(sub(.regG, "\\2", type, perl = TRUE))
} else {
stop("unknown error")
}
.txt <- paste0(.txt, crayon::blurred$italic(sprintf("OBJF by %s", paste0(ifelse(.nnode == 1, "Lapalcian (n.sd=", sprintf("Gaussian Quadrature (n.nodes=%s, n.sd=", .nnode)), .nsd, ")"))))
}
.env$extra <- .txt
return(invisible(.txt))
}
##' @importFrom utils capture.output
.captureOutput <- function(expr, envir = parent.frame()) {
eval(
{
.file <- rawConnection(raw(0L), open = "w")
on.exit({
if (!is.null(.file)) close(.file)
})
capture.output(expr, file = .file)
.ret <- rawConnectionValue(.file)
close(.file)
.file <- NULL
.ret <- rawToChar(.ret)
return(.ret)
},
envir = envir,
enclos = envir
)
}
## LocalWords: covariance
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.