| LogisRayleigh | R Documentation |
Density, distribution function, quantile function and random
generation for the Logistic-Rayleigh(LR)
distribution with shape parameter alpha and scale parameter lambda.
dlogis.rayleigh(x, alpha, lambda, log = FALSE)
plogis.rayleigh(q, alpha, lambda, lower.tail = TRUE, log.p = FALSE)
qlogis.rayleigh(p, alpha, lambda, lower.tail = TRUE, log.p = FALSE)
rlogis.rayleigh(n, alpha, lambda)
x, q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
alpha |
shape parameter. |
lambda |
scale parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
The cummulative distribution function(cdf) of Logistic-Rayleigh(LR) is given by
F(x) = 1 - \frac{1}{1+\left(e^{(\lambda x^2 / 2)} - 1\right)^{\alpha}};\, x \ge 0, \alpha > 0, \lambda > 0.
where \alpha and \lambda are the shape and scale
parameters, respectively.
dlogis.rayleigh gives the density,
plogis.rayleigh gives the distribution function,
qlogis.rayleigh gives the quantile function, and
rlogis.rayleigh generates random deviates.
Lan, Y. and Leemis, L. M. (2008). The Logistic-Exponential Survival Distribution, Naval Research Logistics, 55, 252-264.
.Random.seed about random number; slogis.rayleigh for ExpExt survival / hazard etc. functions
## Load data sets
data(stress)
## Maximum Likelihood(ML) Estimates of alpha & lambda for the data(stress)
## Estimates of alpha & lambda using 'maxLik' package
## alpha.est = 1.4779388, lambda.est = 0.2141343
dlogis.rayleigh(stress, 1.4779388, 0.2141343, log = FALSE)
plogis.rayleigh(stress, 1.4779388, 0.2141343, lower.tail = TRUE, log.p = FALSE)
qlogis.rayleigh(0.25, 1.4779388, 0.2141343, lower.tail=TRUE, log.p = FALSE)
rlogis.rayleigh(30, 1.4779388, 0.2141343)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.