| ks.moew | R Documentation |
The function ks.moew() gives the values for the KS test assuming a MOEW with shape
parameter alpha and tilt parameter lambda. In addition, optionally, this function
allows one to show a comparative graph between the empirical and theoretical cdfs for a specified data set.
ks.moew(x, alpha.est, lambda.est,
alternative = c("less", "two.sided", "greater"), plot = FALSE, ...)
x |
vector of observations. |
alpha.est |
estimate of the parameter alpha |
lambda.est |
estimate of the parameter lambda |
alternative |
indicates the alternative hypothesis and must be one of |
plot |
Logical; if TRUE, the cdf plot is provided. |
... |
additional arguments to be passed to the underlying plot function. |
The Kolmogorov-Smirnov test is a goodness-of-fit technique based on the maximum distance between the empirical and theoretical cdfs.
The function ks.moew() carries out the KS test for the MOEW
Marshall, A. W., Olkin, I. (1997). A new method for adding a parameter to a family of distributions with application to the Weibull and Weibull families. Biometrika,84(3):641-652.
Marshall, A. W., Olkin, I. (2007). Life Distributions: Structure of Nonparametric, Semiparametric, and Parametric Families. Springer, New York.
pp.moew for PP plot and qq.moew for QQ plot
## Load data sets
data(sys2)
## Maximum Likelihood(ML) Estimates of alpha & lambda for the data(sys2)
## alpha.est = 0.3035937, lambda.est = 279.2177754
ks.moew(sys2, 0.3035937, 279.2177754, alternative = "two.sided", plot = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.