Exponentiated exponential distribution | R Documentation |
Compute the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the exponentiated exponential distribution.
se_ee(alpha, beta)
re_ee(alpha, beta, delta)
hce_ee(alpha, beta, delta)
ae_ee(alpha, beta, delta)
alpha |
The strictly positive scale parameter of the exponentiated exponential distribution ( |
beta |
The strictly positive shape parameter of the exponentiated exponential distribution ( |
delta |
The strictly positive parameter ( |
The following is the probability density function of the exponentiated exponential distribution:
f(x)=\alpha\beta e^{-\alpha x}\left(1-e^{-\alpha x}\right)^{\beta-1},
where x > 0
, \alpha > 0
and \beta > 0
.
The functions se_ee, re_ee, hce_ee, and ae_ee provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the exponentiated exponential distribution and \delta
.
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
Nadarajah, S. (2011). The exponentiated exponential distribution: a survey. AStA Advances in Statistical Analysis, 95, 219-251.
Gupta, R. D., & Kundu, D. (2007). Generalized exponential distribution: Existing results and some recent developments. Journal of Statistical Planning and Inference, 137(11), 3537-3547.
re_exp, re_wei, re_nh
se_ee(0.2, 1.4)
delta <- c(1.5, 2, 3)
re_ee(0.2, 1.4, delta)
hce_ee(0.2, 1.4, delta)
ae_ee(0.2, 1.4, delta)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.