Chi-squared distribution | R Documentation |
Compute the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the chi-squared distribution.
se_chi(n)
re_chi(n, delta)
hce_chi(n, delta)
ae_chi(n, delta)
n |
The degree of freedom and the positive parameter of the Chi-squared distribution ( |
delta |
The strictly positive parameter ( |
The following is the probability density function of the (non-central) Chi-squared distribution:
f(x)=\frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}x^{\frac{n}{2}-1}e^{-\frac{x}{2}},
where x > 0
and n > 0
, and \Gamma(a)
denotes the standard gamma function.
The functions se_chi, re_chi, hce_chi, and ae_chi provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the Chi-squared distribution and \delta
.
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous univariate distributions, volume 2 (Vol. 289). John Wiley & Sons.
re_exp, re_gamma, re_bs
se_chi(1.2)
delta <- c(0.2, 0.3)
re_chi(1.2, delta)
hce_chi(1.2, delta)
ae_chi(1.2, delta)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.