Logistic distribution | R Documentation |
Compute the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the logistic distribution.
se_logis(mu, sigma)
re_logis(mu, sigma, delta)
hce_logis(mu, sigma, delta)
ae_logis(mu, sigma, delta)
mu |
The location parameter of the logistic distribution ( |
sigma |
The strictly positive scale parameter of the logistic distribution ( |
delta |
The strictly positive parameter ( |
The following is the probability density function of the logistic distribution:
f(x)=\frac{e^{-\frac{\left(x-\mu\right)}{\sigma}}}{\sigma\left(1+e^{-\frac{\left(x-\mu\right)}{\sigma}}\right)^{2}},
where x\in\left(-\infty,+\infty\right)
, \mu\in\left(-\infty,+\infty\right)
and \sigma > 0
.
The functions se_logis, re_logis, hce_logis, and ae_logis provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the logistic distribution and \delta
.
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous univariate distributions, Volume 2 (Vol. 289). John Wiley & Sons.
re_gum, re_norm
se_logis(0.2, 1.4)
delta <- c(2, 3)
re_logis(1.2, 0.4, delta)
hce_logis(1.2, 0.4, delta)
ae_logis(1.2, 0.4, delta)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.