Kumaraswamy normal distribution | R Documentation |
Compute the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the Kumaraswamy normal distribution.
se_kumnorm(mu, sigma, a, b)
re_kumnorm(mu, sigma, a, b, delta)
hce_kumnorm(mu, sigma, a, b, delta)
ae_kumnorm(mu, sigma, a, b, delta)
mu |
The location parameter of the normal distribution ( |
sigma |
The strictly positive scale parameter of the normal distribution ( |
a |
The strictly positive shape parameter of the Kumaraswamy distribution ( |
b |
The strictly positive shape parameter of the Kumaraswamy distribution ( |
delta |
The strictly positive parameter ( |
The following is the probability density function of the Kumaraswamy normal distribution:
f(x)=\frac{ab}{\sigma}\phi\left(\frac{x-\mu}{\sigma}\right)\left[\Phi\left(\frac{x-\mu}{\sigma}\right)\right]^{a-1}\left[1-\Phi\left(\frac{x-\mu}{\sigma}\right)^{a}\right]^{b-1},
where x\in\left(-\infty,+\infty\right)
, \mu\in\left(-\infty,+\infty\right)
, \sigma > 0
, a > 0
and b > 0
, and the functions \phi(t)
and \Phi(t)
, denote the probability density function and cumulative distribution function of the standard normal distribution, respectively.
The functions se_kumnorm, re_kumnorm, hce_kumnorm, and ae_kumnorm provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the Kumaraswamy normal distribution and \delta
.
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation, 81(7), 883-898.
re_norm, re_kum
se_kumnorm(0.2, 1.5, 1, 1)
delta <- c(1.5, 2, 3)
re_kumnorm(1.2, 1, 2, 1.5, delta)
hce_kumnorm(1.2, 1, 2, 1.5, delta)
ae_kumnorm(1.2, 1, 2, 1.5, delta)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.