Nakagami distribution | R Documentation |
Compute the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the Nakagami distribution.
se_naka(alpha, beta)
re_naka(alpha, beta, delta)
hce_naka(alpha, beta, delta)
ae_naka(alpha, beta, delta)
alpha |
The strictly positive scale parameter of the Nakagami distribution ( |
beta |
The strictly positive shape parameter of the Nakagami distribution ( |
delta |
The strictly positive parameter ( |
The following is the probability density function of the Nakagami distribution:
f(x)=\frac{2\alpha^{\alpha}}{\Gamma(\alpha)\beta^{\alpha}}x^{2\alpha-1}e^{-\frac{\alpha x^{2}}{\beta}},
where x > 0
, \alpha > 0
and \beta > 0
, and \Gamma(a)
is the standard gamma function.
The functions se_naka, re_naka, hce_naka, and ae_naka provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the Nakagami distribution and \delta
.
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
Schwartz, J., Godwin, R. T., & Giles, D. E. (2013). Improved maximum-likelihood estimation of the shape parameter in the Nakagami distribution. Journal of Statistical Computation and Simulation, 83(3), 434-445.
re_exp, re_gamma, re_wei
se_naka(1.2, 0.2)
delta <- c(1.5, 2, 3)
re_naka(1.2, 0.2, delta)
hce_naka(1.2, 0.2, delta)
ae_naka(1.2, 0.2, delta)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.