Laplace distribution | R Documentation |
Compute the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the Laplace distribution.
Se_lap(alpha, beta)
re_lap(alpha, beta, delta)
hce_lap(alpha, beta, delta)
ae_lap(alpha, beta, delta)
alpha |
The location parameter of the Laplace distribution ( |
beta |
The strictly positive scale parameter of the Laplace distribution ( |
delta |
The strictly positive parameter ( |
The following is the probability density function of the Laplace distribution:
f(x)=\frac{1}{2\beta}e^{\frac{-|x-\alpha|}{\beta}},
where x\in\left(-\infty,+\infty\right)
, \alpha\in\left(-\infty,+\infty\right)
and \beta > 0
.
The functions Se_lap, re_lap, hce_lap, and ae_lap provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the Laplace distribution and \delta
.
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
Cordeiro, G. M., & Lemonte, A. J. (2011). The beta Laplace distribution. Statistics & Probability Letters, 81(8), 973-982.
re_gum, re_norm
Se_lap(0.2, 1.4)
delta <- c(2, 3)
re_lap(1.2, 0.4, delta)
hce_lap(1.2, 0.4, delta)
ae_lap(1.2, 0.4, delta)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.