Kumaraswamy distribution | R Documentation |
Compute the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the Kumaraswamy distribution.
se_kum(alpha, beta)
re_kum(alpha, beta, delta)
hce_kum(alpha, beta, delta)
ae_kum(alpha, beta, delta)
alpha |
The strictly positive shape parameter of the Kumaraswamy distribution ( |
beta |
The strictly positive shape parameter of the Kumaraswamy distribution ( |
delta |
The strictly positive scale parameter ( |
The following is the probability density function of the Kumaraswamy distribution:
f(x)=\alpha\beta x^{\alpha-1}\left(1-x^{\alpha}\right)^{\beta-1},
where 0\leq x\leq1
, \alpha > 0
and \beta > 0
.
The functions se_kum, re_kum, hce_kum, and ae_kum provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the Kumaraswamy distribution and \delta
.
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
El-Sherpieny, E. S. A., & Ahmed, M. A. (2014). On the Kumaraswamy distribution. International Journal of Basic and Applied Sciences, 3(4), 372.
Al-Babtain, A. A., Elbatal, I., Chesneau, C., & Elgarhy, M. (2021). Estimation of different types of entropies for the Kumaraswamy distribution. PLoS One, 16(3), e0249027.
re_beta
se_kum(1.2, 1.4)
delta <- c(1.5, 2, 3)
re_kum(1.2, 1.4, delta)
hce_kum(1.2, 1.4, delta)
ae_kum(1.2, 1.4, delta)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.