Log-normal distribution | R Documentation |
Compute the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the log-normal distribution.
se_lnorm(mu, sigma)
re_lnorm(mu, sigma, delta)
hce_lnorm(mu, sigma, delta)
ae_lnorm(mu, sigma, delta)
mu |
The location parameter ( |
sigma |
The strictly positive scale parameter of the log-normal distribution ( |
delta |
The strictly positive parameter ( |
The following is the probability density function of the log-normal distribution:
f(x)=\frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{\left(\log(x)-\mu\right)^{2}}{2\sigma^{2}}},
where x > 0
, \mu\in\left(-\infty,+\infty\right)
and \sigma > 0
.
The functions se_lnorm, re_lnorm, hce_lnorm, and ae_lnorm provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the log-normal distribution and \delta
.
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous univariate distributions, Volume 1, Chapter 14. Wiley, New York.
re_wei, re_norm
se_lnorm(0.2, 1.4)
delta <- c(2, 3)
re_lnorm(1.2, 0.4, delta)
hce_lnorm(1.2, 0.4, delta)
ae_lnorm(1.2, 0.4, delta)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.