Weibull distribution | R Documentation |
Compute the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the Weibull distribution.
se_wei(alpha, beta)
re_wei(alpha, beta, delta)
hce_wei(alpha, beta, delta)
ae_wei(alpha, beta, delta)
alpha |
The strictly positive scale parameter of the Weibull distribution ( |
beta |
The strictly positive shape parameter of the Weibull distribution ( |
delta |
The strictly positive parameter ( |
The following is the probability density function of the Weibull distribution:
f(x)=\frac{\beta}{\alpha}\left(\frac{x}{\alpha}\right)^{\beta-1}e^{-(\frac{x}{\alpha})^{\beta}},
where x > 0
, \alpha > 0
and \beta > 0
.
The functions se_wei, re_wei, hce_wei, and ae_wei provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the Weibull distribution and \delta
.
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
Weibull, W. (1951). A statistical distribution function of wide applicability. Journal of applied mechanics, 18, 293-297.
re_exp, re_gamma, re_ee
se_wei(1.2, 0.2)
delta <- c(1.5, 2, 3)
re_wei(1.2, 0.2, delta)
hce_wei(1.2, 0.2, delta)
ae_wei(1.2, 0.2, delta)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.