Inverse-gamma distribution | R Documentation |
Compute the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the inverse-gamma distribution.
se_ig(alpha, beta)
re_ig(alpha, beta, delta)
hce_ig(alpha, beta, delta)
ae_ig(alpha, beta, delta)
alpha |
The strictly positive shape parameter of the inverse-gamma distribution ( |
beta |
The strictly positive scale parameter of the inverse-gamma distribution ( |
delta |
The strictly positive parameter ( |
The following is the probability density function of the inverse-gamma distribution:
f(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{-\alpha-1}e^{-\frac{\beta}{x}},
where x > 0
, \alpha > 0
and \beta > 0
, and \Gamma(a)
is the standard gamma function.
The functions se_ig, re_ig, hce_ig, and ae_ig provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the inverse-gamma distribution and \delta
.
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
Rivera, P. A., Calderín-Ojeda, E., Gallardo, D. I., & Gómez, H. W. (2021). A compound class of the inverse Gamma and power series distributions. Symmetry, 13(8), 1328.
Glen, A. G. (2017). On the inverse gamma as a survival distribution. Computational Probability Applications, 15-30.
re_exp, re_gamma
se_ig(1.2, 0.2)
delta <- c(1.5, 2, 3)
re_ig(1.2, 0.2, delta)
hce_ig(1.2, 0.2, delta)
ae_ig(1.2, 0.2, delta)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.