Lomax distribution | R Documentation |
Compute the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the Lomax distribution.
se_lom(alpha, beta)
re_lom(alpha, beta, delta)
hce_lom(alpha, beta, delta)
ae_lom(alpha, beta, delta)
alpha |
The strictly positive shape parameter of the Lomax distribution ( |
beta |
The strictly positive scale parameter of the Lomax distribution ( |
delta |
The strictly positive parameter ( |
The following is the probability density function of the Lomax distribution:
f(x)=\frac{\alpha}{\beta}\left(1+\frac{x}{\beta}\right)^{-\alpha-1},
where x > 0
, \alpha > 0
and \beta > 0
.
The functions se_lom, re_lom, hce_lom, and ae_lom provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the Lomax distribution and \delta
.
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
Abd-Elfattah, A. M., Alaboud, F. M., & Alharby, A. H. (2007). On sample size estimation for Lomax distribution. Australian Journal of Basic and Applied Sciences, 1(4), 373-378.
re_exp, re_gamma
se_lom(1.2, 0.2)
delta <- c(1.5, 2, 3)
re_lom(1.2, 0.2, delta)
hce_lom(1.2, 0.2, delta)
ae_lom(1.2, 0.2, delta)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.