Beta exponential distribution | R Documentation |
Compute the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the beta exponential distribution.
se_bexp(lambda, alpha, beta)
re_bexp(lambda, alpha, beta, delta)
hce_bexp(lambda, alpha, beta, delta)
ae_bexp(lambda, alpha, beta, delta)
lambda |
The strictly positive scale parameter of the exponential distribution ( |
alpha |
The strictly positive shape parameter of the beta distribution ( |
beta |
The strictly positive shape parameter of the beta distribution ( |
delta |
The strictly positive parameter ( |
The following is the probability density function of the beta exponential distribution:
f(x)=\frac{\lambda e^{-\beta\lambda x}}{B(\alpha,\beta)}\left(1-e^{-\lambda x}\right)^{\alpha-1},
where x > 0
, \alpha > 0
, \beta > 0
and \lambda > 0
, and B(a,b)
denotes the standard beta function.
The functions se_bexp, re_bexp, hce_bexp, and ae_bexp provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the beta exponential distribution and \delta
.
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
Nadarajah, S., & Kotz, S. (2006). The beta exponential distribution. Reliability Engineering & System Safety, 91(6), 689-697.
re_beta, re_exp
# Computation of the Shannon entropy
se_bexp(1.2, 0.2, 1.5)
delta <- c(0.2, 0.3, 0.5)
# Computation of the Rényi entropy
re_bexp(1.2, 0.2, 0.5, delta)
# Computation of the Havrda and Charvat entropy
hce_bexp(1.2, 0.2, 1.5, delta)
# Computation of the Arimoto entropy
ae_bexp(1.2, 0.2, 1.5, delta)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.