F distribution | R Documentation |
Compute the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the F distribution.
se_f(alpha, beta)
re_f(alpha, beta, delta)
hce_f(alpha, beta, delta)
ae_f(alpha, beta, delta)
alpha |
The strictly positive parameter (first degree of freedom) of the F distribution ( |
beta |
The strictly positive parameter (second degree of freedom) of the F distribution ( |
delta |
The strictly positive parameter ( |
The following is the probability density function of the F distribution:
f(x)=\frac{1}{B(\frac{\alpha}{2},\frac{\beta}{2})}\left(\frac{\alpha}{\beta}\right)^{\frac{\alpha}{2}}x^{\frac{\alpha}{2}-1}\left(1+\frac{\alpha}{\beta}x\right)^{-\left(\frac{\alpha+\beta}{2}\right)},
where x > 0
, \alpha > 0
and \beta > 0
, and B(a,b)
is the standard beta function.
The functions se_f, re_f, hce_f, and ae_f provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the F distribution and \delta
.
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous univariate distributions, volume 2 (Vol. 289). John Wiley & Sons.
re_exp, re_gamma
se_f(1.2, 1.4)
delta <- c(2.2, 2.3)
re_f(1.2, 0.4, delta)
hce_f(1.2, 1.4, delta)
ae_f(1.2, 1.4, delta)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.