Exponentiated Weibull distribution | R Documentation |
Compute the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the exponentiated Weibull distribution.
se_ew(a, beta, zeta)
re_ew(a, beta, zeta, delta)
hce_ew(a, beta, zeta, delta)
ae_ew(a, beta, zeta, delta)
a |
The strictly positive shape parameter of the exponentiated Weibull distribution ( |
beta |
The strictly positive scale parameter of the baseline Weibull distribution ( |
zeta |
The strictly positive shape parameter of the baseline Weibull distribution ( |
delta |
The strictly positive parameter ( |
The following is the probability density function of the exponentiated Weibull distribution:
f(x)=a\zeta\beta^{-\zeta}x^{\zeta-1}e^{-\left(\frac{x}{\beta}\right)^{\zeta}}\left[1-e^{-\left(\frac{x}{\beta}\right)^{\zeta}}\right]^{a-1},
where x > 0
, a > 0
, \beta > 0
and \zeta > 0
.
The functions se_ew, re_ew, hce_ew, and ae_ew provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the exponentiated Weibull distribution and \delta
.
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
Nadarajah, S., Cordeiro, G. M., & Ortega, E. M. (2013). The exponentiated Weibull distribution: a survey. Statistical Papers, 54, 839-877.
re_exp, re_wei, re_ew
se_ew(0.8, 0.2, 0.8)
delta <- c(1.5, 2, 3)
re_ew(1.2, 1.2, 1.4, delta)
hce_ew(1.2, 1.2, 1.4, delta)
ae_ew(1.2, 1.2, 1.4, delta)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.