Truncated exponential extension distribution | R Documentation |
Compute the relative information loss of the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the truncated exponential extension distribution.
rlse_nh(p, alpha, beta)
rlre_nh(p, alpha, beta, delta)
rlhce_nh(p, alpha, beta, delta)
rlae_nh(p, alpha, beta, delta)
alpha |
The strictly positive parameter of the exponential extension distribution ( |
beta |
The strictly positive parameter of the exponential extension distribution ( |
p |
The truncation time |
delta |
The strictly positive parameter ( |
The functions rlse_nh, rlre_nh, rlhce_nh, and rlae_nh provide the relative information loss based on the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the truncated exponential extension distribution, p
and \delta
.
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
Awad, A. M., & Alawneh, A. J. (1987). Application of entropy to a life-time model. IMA Journal of Mathematical Control and Information, 4(2), 143-148.
Nadarajah, S., & Haghighi, F. (2011). An extension of the exponential distribution. Statistics, 45(6), 543-558.
re_nh
p <- c(0.25, 0.50, 0.75)
rlse_nh(p, 1.2, 0.2)
rlre_nh(p, 1.2, 0.2, 0.5)
rlhce_nh(p, 1.2, 0.2, 0.5)
rlae_nh(p, 1.2, 0.2, 0.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.