Kumaraswamy exponential distribution | R Documentation |
Compute the Rényi, Havrda and Charvat, and Arimoto entropies of the Kumaraswamy exponential distribution.
re_kexp(lambda, a, b, delta)
hce_kexp(lambda, a, b, delta)
ae_kexp(lambda, a, b, delta)
a |
The strictly positive shape parameter of the Kumaraswamy distribution ( |
b |
The strictly positive shape parameter of the Kumaraswamy distribution ( |
lambda |
The strictly positive parameter of the exponential distribution ( |
delta |
The strictly positive parameter ( |
The following is the probability density function of the Kumaraswamy exponential distribution:
f(x)=ab\lambda e^{-\lambda x}\left(1-e^{-\lambda x}\right)^{a-1}\left\{ 1-\left(1-e^{-\lambda x}\right)^{a}\right\} ^{b-1},
where x > 0
, a > 0
, b > 0
and \lambda > 0
.
The functions re_kexp, hce_kexp, and ae_kexp provide the Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the Kumaraswamy exponential distribution and \delta
.
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation, 81(7), 883-898.
re_exp, re_kum
delta <- c(1.5, 2, 3)
re_kexp(1.2, 1.2, 1.4, delta)
hce_kexp(1.2, 1.2, 1.4, delta)
ae_kexp(1.2, 1.2, 1.4, delta)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.