Frechet distribution | R Documentation |
Compute the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the Fréchet distribution.
se_fre(alpha, beta, zeta)
re_fre(alpha, beta, zeta, delta)
hce_fre(alpha, beta, zeta, delta)
ae_fre(alpha, beta, zeta, delta)
alpha |
The parameter of the Fréchet distribution ( |
beta |
The parameter of the Fréchet distribution ( |
zeta |
The parameter of the Fréchet distribution ( |
delta |
The strictly positive parameter ( |
The following is the probability density function of the Fréchet distribution:
f(x)=\frac{\alpha}{\zeta}\left(\frac{x-\beta}{\zeta}\right)^{-1-\alpha}e^{-(\frac{x-\beta}{\zeta})^{-\alpha},}
where x>\beta
, \alpha>0
, \zeta>0
and \beta\in\left(-\infty,+\infty\right)
. The Fréchet distribution is also known as inverse Weibull distribution and special case of the generalized extreme value distribution.
The functions se_fre, re_fre, hce_fre, and ae_fre provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the Fréchet distribution distribution and \delta
.
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
Abbas, K., & Tang, Y. (2015). Analysis of Fréchet distribution using reference priors. Communications in Statistics-Theory and Methods, 44(14), 2945-2956.
re_exp, re_gum
se_fre(0.2, 1.4, 1.2)
delta <- c(2, 3)
re_fre(1.2, 0.4, 1.2, delta)
hce_fre(1.2, 0.4, 1.2, delta)
ae_fre(1.2, 0.4, 1.2, delta)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.