R/StatsAndCIs.r

Defines functions fn fn BinomRatioCI_old BinomDiffCI BinomCIn BinomCI BootCI LOF Outlier HodgesLehmann HuberM .huberM .wgt.himedian .tauHuber TukeyBiweight Hmean Mode MESS_auc AUC FindCorr print.CorPolychor CorCI FisherZInv FisherZ CorPart Quantile Median.Freq Median.factor Median.default Median Mgsub VarX EX VarN SDN Var.Freq MADCI MAD .NormWeights

Documented in AUC BinomCI BinomCIn BinomDiffCI BootCI CorCI CorPart EX FindCorr FisherZ FisherZInv Hmean HodgesLehmann HuberM LOF MAD MADCI Median Median.default Median.factor Median.Freq Mgsub Mode Outlier print.CorPolychor Quantile SDN TukeyBiweight Var.Freq VarN VarX

# Project:	DescTools
# Chapter:  Statistical functions and confidence intervals
#
# Purpose:  Tools for descriptive statistics, the missing link...
#	          Univariat, pairwise bivariate, groupwise und multivariate
#
# Author:   Andri Signorell
# Version:	0.99.x
#


# some aliases

# internal function, no use to export it.. (?)
.NormWeights <- function(x, weights, na.rm=FALSE, zero.rm=FALSE, normwt=FALSE) {
  
  # Idea Henrik Bengtsson
  # we remove values with zero (and negative) weight. 
  # This would:
  #  1) take care of the case when all weights are zero,
  #  2) it will most likely speed up the sorting.
  
  if (na.rm){
    
    keep <- !is.na(x) & !is.na(weights)
    
    if(zero.rm)
      # remove values with zero weights
      keep <- keep & (weights > 0)

    x <- x[keep]
    weights <- weights[keep]
  } 
  
  if(any(is.na(x)) | (!is.null(weights) & any(is.na(weights))))
    return(NA_real_)
  
  n <- length(x)
  
  if (length(weights) != n) 
    stop("length of 'weights' must equal the number of rows in 'x'")
  
  # x and weights have length=0
  if(length(x)==0)
    return(list(x = x, weights = x, wsum = NaN))
  
  if (any(weights< 0) || (s <- sum(weights)) == 0) 
    stop("weights must be non-negative and not all zero")
  

  # we could normalize the weights to sum up to 1
  if (normwt) 
    weights <- weights * n/s
  
  return(list(x=x, weights=as.double(weights), wsum=s))
  
}








MAD <- function(x, weights = NULL, center = Median, constant = 1.4826, na.rm = FALSE, 
                low = FALSE, high = FALSE) {
  
  
  if (is.function(center)) {
    fct <- center
    center <- "fct"
    if(is.null(weights))
      center <- gettextf("%s(x)", center)
    else
      center <- gettextf("%s(x, weights=weights)", center)
    center <- eval(parse(text = center))
  }
  
  if(!is.null(weights)) {
    z <- .NormWeights(x, weights, na.rm=na.rm, zero.rm=TRUE)
    
    res <- constant *  Median(abs(z$x - center), weights = z$weights)
    
  } else {
    # fall back to mad(), if there are no weights
    res <- mad(x, center = center, constant = constant, na.rm = na.rm, low=low, high=high)
    
  }
  
  return(res)
  
}



MADCI <- function(x, y = NULL, two.samp.diff = TRUE, gld.est = "TM", 
                  conf.level = 0.95, sides = c("two.sided","left","right"), 
                  na.rm = FALSE, ...) {

  if (na.rm) x <- na.omit(x)
  
  sides <- match.arg(sides, choices = c("two.sided","left","right"), 
                     several.ok = FALSE)
  
  if(sides!="two.sided")
    conf.level <- 1 - 2*(1-conf.level)

  asv.mad <- function(x, method = "TM"){
    lambda <- fit.fkml(x, method = method)$lambda
    m  <- median(x)
    mad.x <- mad(x)
    fFinv <- dgl(c(m - mad.x, m + mad.x, m), lambda1 = lambda)
    FFinv <- pgl(c(m - mad.x, m + mad.x), lambda1 = lambda)
    A <- fFinv[1] + fFinv[2]
    C <- fFinv[1] - fFinv[2]
    B <- C^2 + 4*C*fFinv[3]*(1 - FFinv[2] - FFinv[1])
    
    (1/(4 * A^2))*(1 + B/fFinv[3]^2)
    
  } 
  
  alpha <- 1 - conf.level
  z <- qnorm(1 - alpha/2)
  
  est <- mad.x <- mad(x)
  
  n.x <- length(x)
  asv.x <- asv.mad(x, method = gld.est)
  
  if(is.null(y)){
    ci <- mad.x + c(-z, z) * sqrt(asv.x / n.x)
    
  } else{
    y <- y[!is.na(y)]
    mad.y <- mad(y)
    n.y <- length(y)
    
    asv.y <- asv.mad(y, method = gld.est)
    
    if(two.samp.diff){
      est <- mad.x - mad.y
      ci <- est + c(-z, z)*sqrt(asv.x/n.x + asv.y/n.y)
    } else{
      est <- (mad.x/mad.y)^2
      log.est <- log(est)
      var.est <- 4 * est * ((1/mad.y^2)*asv.x/n.x + (est/mad.y^2)*asv.y/n.y)
      Var.log.est <- (1 / est^2) * var.est
      
      ci <- exp(log.est + c(-z, z) * sqrt(Var.log.est))
    }
  }
  
  res <- c(est, ci)
  
  names(res) <- c("mad","lwr.ci","upr.ci")
  
  if(sides=="left")
    res[3] <- Inf
  else if(sides=="right")
    res[2] <- -Inf
  
  return( res )
  
}



# from stats
SD <- function (x, weights = NULL, na.rm = FALSE, ...)
  sqrt(Var(if (is.vector(x) || is.factor(x)) x else as.double(x),
           weights=weights, na.rm = na.rm, ...))


Var <- function (x, ...)
  UseMethod("Var")



Var.default <- function (x, weights = NULL, na.rm = FALSE, method = c("unbiased",  "ML"), ...) {

  if(is.null(weights)) {
    res <- var(x=x, na.rm=na.rm)
    
  } else {
    z <- .NormWeights(x, weights, na.rm=na.rm, zero.rm=TRUE)

    if (match.arg(method) == "ML")
      return(as.numeric(stats::cov.wt(cbind(z$x), z$weights, method = "ML")$cov))
    
    xbar <- sum(z$weights * x) / z$wsum
    
    res <- sum(z$weights * ((z$x - xbar)^2))/(z$wsum - 1)
    
  }
  
  return(res)
  
}


Var.Freq <- function(x, breaks, ...)  {
  n <- sum(x$freq)
  mu <- sum(head(MoveAvg(breaks, order=2, align="left"), -1) * x$perc)
  s2 <- (sum(head(MoveAvg(breaks, order=2, align="left"), -1)^2 * x$freq) - n*mu^2) / (n-1)

  return(s2)
}




Cov <- cov
Cor <- cor



SDN <- function(x, na.rm = FALSE){
  sd(x, na.rm=na.rm) * sqrt(((n <- sum(!is.na(x)))-1) /n)
}


VarN <- function(x, na.rm = FALSE){
  var(x, na.rm=na.rm) * ((n <- sum(!is.na(x)))-1) /n
}


EX <- function(x, p) sum(x * p)

VarX <- function(x, p) sum((x - EX(x, p))^2 * p)



# multiple gsub
Mgsub <- function(pattern, replacement, x, ...) {
  
  if (length(pattern)!=length(replacement)) {
    stop("pattern and replacement do not have the same length.")
  }
  result <- x
  for (i in 1:length(pattern)) {
    result <- gsub(pattern[i], replacement[i], result, ...)
  }
  
  result
  
}




# Length(x)
# Table(x)
# Log(x)
# Abs(x)
#
# "abs", "sign", "sqrt", "ceiling", "floor", "trunc", "cummax", "cummin", "cumprod", "cumsum",
# "log", "log10", "log2", "log1p", "acos", "acosh", "asin", "asinh", "atan", "atanh",
# "exp", "expm1", "cos", "cosh", "cospi", "sin", "sinh", "sinpi", "tan", "tanh",
# "tanpi", "gamma", "lgamma", "digamma", "trigamma"




Median <- function(x, ...)
  UseMethod("Median")


Median.default <- function(x, weights = NULL, na.rm = FALSE, ...) {
  if(is.null(weights))
    median(x=x, na.rm=na.rm)
  else 
    Quantile(x, weights, probs=0.5, na.rm=na.rm, names=FALSE)
}


# ordered interface for the median
Median.factor <- function(x, na.rm = FALSE, ...) {

  # Answered by Hong Ooi on 2011-10-28T00:37:08-04:00
  # http://www.rqna.net/qna/nuiukm-idiomatic-method-of-finding-the-median-of-an-ordinal-in-r.html

  # return NA, if x is not ordered
  # clearme: why not median.ordered?
  if(!is.ordered(x)) return(NA)

  if(na.rm) x <- na.omit(x)
  if(any(is.na(x))) return(NA)

  levs <- levels(x)
  m <- median(as.integer(x), na.rm = na.rm)
  if(floor(m) != m)
  {
    warning("Median is between two values; using the first one")
    m <- floor(m)
  }
  ordered(m, labels = levs, levels = seq_along(levs))
}



Median.Freq <- function(x, breaks, ...)  {

  mi <- min(which(x$cumperc > 0.5))
  breaks[mi] + (tail(x$cumfreq, 1)/2 - x[mi-1, "cumfreq"]) /
    x[mi, "freq"] * diff(breaks[c(mi, mi+1)])

}




# further weighted quantiles in Hmisc and modi, both on CRAN

Quantile <- function(x, weights = NULL, probs = seq(0, 1, 0.25),
                             na.rm = FALSE, names=TRUE, type = 7, digits=7) {

  
  if(is.null(weights)){
    quantile(x=x, probs=probs, na.rm=na.rm, names=names, type=type, digits=digits)
    
  } else {
  
  # this is a not exported stats function
  format_perc <- function (x, digits = max(2L, getOption("digits")), probability = TRUE, 
            use.fC = length(x) < 100, ...) {
    if (length(x)) {
      if (probability) 
        x <- 100 * x
      ans <- paste0(if (use.fC) 
        formatC(x, format = "fg", width = 1, digits = digits)
        else format(x, trim = TRUE, digits = digits, ...), "%")
      ans[is.na(x)] <- ""
      ans
    }
    else character(0)
  }
  
  
  
  sorted <- FALSE

  # initializations
  if (!is.numeric(x)) stop("'x' must be a numeric vector")
  
  n <- length(x)
  
  if (n == 0 || (!isTRUE(na.rm) && any(is.na(x)))) {
    # zero length or missing values
    return(rep.int(NA, length(probs)))
  }
  if (!is.null(weights)) {
    if (!is.numeric(weights)) stop("'weights' must be a numeric vector")
    else if (length(weights) != n) {
      stop("'weights' must have the same length as 'x'")
    } else if (!all(is.finite(weights))) stop("missing or infinite weights")
    if (any(weights < 0)) warning("negative weights")
    
    if (!is.numeric(probs) || all(is.na(probs)) ||
        isTRUE(any(probs < 0 | probs > 1))) {
      stop("'probs' must be a numeric vector with values in [0,1]")
      
    }
    
    if (all(weights == 0)) { # all zero weights
      warning("all weights equal to zero")
      return(rep.int(0, length(probs)))
    }
  }
  
  # remove NAs (if requested)
  if(isTRUE(na.rm)){
    indices <- !is.na(x)
    x <- x[indices]
    n <- length(x)
    if(!is.null(weights)) weights <- weights[indices]
  }
  # sort values and weights (if requested)
  if(!isTRUE(sorted)) {
    #        order <- order(x, na.last=NA)  ## too slow
    order <- order(x)
    x <- x[order]
    weights <- weights[order]  # also works if 'weights' is NULL
  }
  # some preparations
  if(is.null(weights)) rw <- (1:n)/n
  else rw <- cumsum(weights)/sum(weights)
  
  # obtain quantiles
  # currently only type 5
  if (type == 5) {
    qs <- sapply(probs,
                function(p) {
                  if (p == 0) return(x[1])
                  else if (p == 1) return(x[n])
                  select <- min(which(rw >= p))
                  if(rw[select] == p) mean(x[select:(select+1)])
                  else x[select]
                })
    
  } else if(type == 7){
    
    if(is.null(weights)){
      index <- 1 + max(n - 1, 0) * probs
      lo <- pmax(floor(index), 1)
      hi <- ceiling(index)
      x <- sort(x, partial = if (n == 0) 
        numeric()
        else unique(c(lo, hi)))
      qs <- x[lo]
      i <- which((index > lo & x[hi] != qs))
      h <- (index - lo)[i]
      qs[i] <- (1 - h) * qs[i] + h * x[hi[i]]
    
    } else {
      n     <- sum(weights)
      ord <- 1 + (n - 1) * probs
      low   <- pmax(floor(ord), 1)
      high  <- pmin(low + 1, n)
      ord <- ord %% 1
      ## Find low and high order statistics
      ## These are minimum values of x such that the cum. freqs >= c(low,high)
      allq <- approx(cumsum(weights), x, xout=c(low, high), 
                     method='constant', f=1, rule=2)$y
      k <- length(probs)
      qs <- (1 - ord)*allq[1:k] + ord*allq[-(1:k)]
    }
    
  } else {
    qs <- NA
    warning(gettextf("type %s is not implemented", type))
  }
  
  # return(unname(q))
  # why unname? change to named.. 14.10.2020
  
  if (names && length(probs) > 0L) {
    stopifnot(is.numeric(digits), digits >= 1)
    names(qs) <- format_perc(probs, digits = digits)
  }
  
  return(qs)
  
  }
}




IQRw <- function (x, weights = NULL, na.rm = FALSE, type = 7) {
  
  if(is.null(weights))
    IQR(x=x, na.rm=na.rm, type=type)
  
  else 
    diff(Quantile(x, weights=weights, probs=c(0.25, 0.75), na.rm=na.rm, type=type))
  
}



## stats: functions (RobRange, Hmean, Gmean, Aad, HuberM etc.) ====


CorPart <- function(m, x, y)  {

  cl <- match.call()

  if(dim(m)[1] != dim(m)[2]) {
    n.obs <- dim(m)[1]
    m <- cor(m, use="pairwise")
  }
  if(!is.matrix(m)) m <- as.matrix(m)

  # first reorder the matrix to select the right variables
  nm <- dim(m)[1]
  t.mat <- matrix(0, ncol=nm, nrow=nm)
  xy <- c(x,y)
  numx <- length(x)
  numy <- length(y)
  nxy <- numx+numy

  for (i in 1:nxy) {
    t.mat[i, xy[i]] <- 1
  }

  reorder <- t.mat %*% m %*% t(t.mat)
  reorder[abs(reorder) > 1] <- NA    # this allows us to use the matrix operations to reorder and pick

  X <- reorder[1:numx, 1:numx]
  Y <- reorder[1:numx, (numx+1):nxy]

  phi <- reorder[(numx+1):nxy,(numx+1):nxy]
  phi.inv <- solve(phi)

  X.resid <- X - Y %*% phi.inv %*% t(Y)
  sd <- diag(sqrt(1/diag(X.resid)))
  X.resid <- sd %*% X.resid %*% sd

  colnames(X.resid) <- rownames(X.resid) <- colnames(m)[x]

  return(X.resid)

}


FisherZ <- function(rho)  {0.5*log((1+rho)/(1-rho)) }   #converts r to z

FisherZInv <- function(z) {(exp(2*z)-1)/(1+exp(2*z)) }   #converts back again


CorCI <- function(rho, n, conf.level = 0.95, alternative = c("two.sided","less","greater")) {


  if (n < 3L)
    stop("not enough finite observations")

  if (!missing(conf.level) && (length(conf.level) != 1 || !is.finite(conf.level)
                               || conf.level < 0 || conf.level > 1))
    stop("'conf.level' must be a single number between 0 and 1")

  alternative <- match.arg(alternative)

  # correct rho == 1 with rho == almost 1 in order to return ci = c(1, 1)
  # which is a sensible value for the confidence interval
  if(identical(rho, 1)) 
    ci <- c(1, 1)
  
  else {
    z <- FisherZ(rho)
    sigma <- 1/sqrt(n - 3)
  
    ci <- switch(alternative,
                 less = c(-Inf, z + sigma * qnorm(conf.level)),
                 greater = c(z - sigma * qnorm(conf.level), Inf),
                 two.sided = z + c(-1, 1) * sigma * qnorm((1 + conf.level)/2))
    ci <- FisherZInv(ci)
  }

  return(c(cor = rho, lwr.ci = ci[1], upr.ci = ci[2]))
  
}




CorPolychor <- function (x, y, ML=FALSE, control=list(), std.err=FALSE, maxcor=.9999){

  # last modified 21 Oct 08 by J. Fox

  binBvn <- function(rho, row.cuts, col.cuts, bins=4){
    # last modified 29 Mar 07 by J. Fox

    row.cuts <- if (missing(row.cuts)) c(-Inf, 1:(bins - 1)/bins, Inf) else  c(-Inf, row.cuts, Inf)
    col.cuts <- if (missing(col.cuts)) c(-Inf, 1:(bins - 1)/bins, Inf) else  c(-Inf, col.cuts, Inf)
    r <- length(row.cuts) - 1
    c <- length(col.cuts) - 1
    P <- matrix(0, r, c)
    R <- matrix(c(1, rho, rho, 1), 2, 2)
    for (i in 1:r){
      for (j in 1:c){
        P[i,j] <- pmvnorm(lower=c(row.cuts[i], col.cuts[j]),
                          upper=c(row.cuts[i+1], col.cuts[j+1]),
                          corr=R)
      }
    }
    P
  }


  f <- function(pars) {
    if (length(pars) == 1){
      rho <- pars
      if (abs(rho) > maxcor) rho <- sign(rho)*maxcor
      row.cuts <- rc
      col.cuts <- cc
    }
    else {
      rho <- pars[1]
      if (abs(rho) > maxcor) rho <- sign(rho)*maxcor
      row.cuts <- pars[2:r]
      col.cuts <- pars[(r+1):(r+c-1)]
    }
    P <- binBvn(rho, row.cuts, col.cuts)
    - sum(tab * log(P))
  }

  tab <- if (missing(y)) x else table(x, y)
  zerorows <- apply(tab, 1, function(x) all(x == 0))
  zerocols <- apply(tab, 2, function(x) all(x == 0))
  zr <- sum(zerorows)
  if (0 < zr) warning(paste(zr, " row", suffix <- if(zr == 1) "" else "s",
                            " with zero marginal", suffix," removed", sep=""))
  zc <- sum(zerocols)
  if (0 < zc) warning(paste(zc, " column", suffix <- if(zc == 1) "" else "s",
                            " with zero marginal", suffix, " removed", sep=""))
  tab <- tab[!zerorows, ,drop=FALSE]
  tab <- tab[, !zerocols, drop=FALSE]
  r <- nrow(tab)
  c <- ncol(tab)
  if (r < 2) {
    warning("the table has fewer than 2 rows")
    return(NA)
  }
  if (c < 2) {
    warning("the table has fewer than 2 columns")
    return(NA)
  }
  n <- sum(tab)
  rc <- qnorm(cumsum(rowSums(tab))/n)[-r]
  cc <- qnorm(cumsum(colSums(tab))/n)[-c]
  if (ML) {
    result <- optim(c(optimise(f, interval=c(-1, 1))$minimum, rc, cc), f,
                    control=control, hessian=std.err)
    if (result$par[1] > 1){
      result$par[1] <- 1
      warning("inadmissible correlation set to 1")
    }
    else if (result$par[1] < -1){
      result$par[1] <- -1
      warning("inadmissible correlation set to -1")
    }
    if (std.err) {
      chisq <- 2*(result$value + sum(tab * log((tab + 1e-6)/n)))
      df <- length(tab) - r - c
      result <- list(type="polychoric",
                     rho=result$par[1],
                     row.cuts=result$par[2:r],
                     col.cuts=result$par[(r+1):(r+c-1)],
                     var=solve(result$hessian),
                     n=n,
                     chisq=chisq,
                     df=df,
                     ML=TRUE)
      class(result) <- "polycor"
      return(result)
    }
    else return(as.vector(result$par[1]))
  }
  else if (std.err){
    result <- optim(0, f, control=control, hessian=TRUE, method="BFGS")
    if (result$par > 1){
      result$par <- 1
      warning("inadmissible correlation set to 1")
    }
    else if (result$par < -1){
      result$par <- -1
      warning("inadmissible correlation set to -1")
    }
    chisq <- 2*(result$value + sum(tab *log((tab + 1e-6)/n)))
    df <- length(tab) - r - c
    result <- list(type="polychoric",
                   rho=result$par,
                   var=1/result$hessian,
                   n=n,
                   chisq=chisq,
                   df=df,
                   ML=FALSE)
    class(result) <- "CorPolychor"
    return(result)
  }
  else optimise(f, interval=c(-1, 1))$minimum
}




print.CorPolychor <- function(x, digits = max(3, getOption("digits") - 3), ...){

  # last modified 24 June 04 by J. Fox

  if (x$type == "polychoric"){
    se <- sqrt(diag(x$var))
    se.rho <- se[1]
    est <- if (x$ML) "ML est." else "2-step est."
    cat("\nPolychoric Correlation, ", est, " = ", signif(x$rho, digits),
        " (", signif(se.rho, digits), ")", sep="")
    if (x$df > 0)
      cat("\nTest of bivariate normality: Chisquare = ",
          signif(x$chisq, digits), ", df = ", x$df, ", p = ",
          signif(pchisq(x$chisq, x$df, lower.tail=FALSE), digits), "\n", sep="")
    else cat("\n")
    r <- length(x$row.cuts)
    c <- length(x$col.cuts)
    if (r == 0) return(invisible(x))
    row.cuts.se <- se[2:(r+1)]
    col.cuts.se <- se[(r+2):(r+c+1)]
    rowThresh <- signif(cbind(x$row.cuts, row.cuts.se), digits)
    if (r > 1) cat("\n  Row Thresholds\n")
    else cat("\n  Row Threshold\n")
    colnames(rowThresh) <- c("Threshold", "Std.Err.")
    rownames(rowThresh) <- if (r > 1) 1:r else " "
    print(rowThresh)
    colThresh <- signif(cbind(x$col.cuts, col.cuts.se), digits)
    if (c > 1) cat("\n\n  Column Thresholds\n")
    else cat("\n\n  Column Threshold\n")
    colnames(colThresh) <- c("Threshold", "Std.Err.")
    rownames(colThresh) <- if (c > 1) 1:c else " "
    print(colThresh)
  }
  else if (x$type == "polyserial"){
    se <- sqrt(diag(x$var))
    se.rho <- se[1]
    est <- if (x$ML) "ML est." else "2-step est."
    cat("\nPolyserial Correlation, ", est, " = ", signif(x$rho, digits),
        " (", signif(se.rho, digits), ")", sep="")
    cat("\nTest of bivariate normality: Chisquare = ", signif(x$chisq, digits),
        ", df = ", x$df, ", p = ", signif(pchisq(x$chisq, x$df, lower.tail=FALSE), digits),
        "\n\n", sep="")
    if (length(se) == 1) return(invisible(x))
    cuts.se <- se[-1]
    thresh <- signif(rbind(x$cuts, cuts.se), digits)
    colnames(thresh) <- 1:length(x$cuts)
    rownames(thresh) <- c("Threshold", "Std.Err.")
    print(thresh)
  }
  else print(unclass(x))
  invisible(x)
}




FindCorr <- function(x, cutoff = .90, verbose = FALSE) {

  # Author: Max Kuhn
  # source library(caret)

  varnum <- dim(x)[1]

  if(!isTRUE(all.equal(x, t(x)))) stop("correlation matrix is not symmetric")
  if(varnum ==1) stop("only one variable given")

  x <- abs(x)

  # re-ordered columns based on max absolute correlation
  originalOrder <- 1:varnum

  averageCorr <- function(x) mean(x, na.rm = TRUE)
  tmp <- x
  diag(tmp) <- NA

  maxAbsCorOrder <- order(apply(tmp, 2, averageCorr), decreasing = TRUE)
  x <- x[maxAbsCorOrder, maxAbsCorOrder]
  newOrder <- originalOrder[maxAbsCorOrder]

  deletecol <- 0

  for(i in 1L:(varnum-1))
  {
    for(j in (i+1):varnum)
    {
      if(!any(i == deletecol)  & !any(j == deletecol))
      {
        if(verbose)
          cat("Considering row\t", newOrder[i],
              "column\t", newOrder[j],
              "value\t", round(x[i,j], 3), "\n")
        if(abs(x[i,j]) > cutoff)
        {
          if(mean(x[i, -i]) > mean(x[-j, j]))
          {
            deletecol <- unique(c(deletecol, i))
            if(verbose) cat("  Flagging column\t", newOrder[i], "\n")
          } else {
            deletecol <- unique(c(deletecol, j))
            if(verbose) cat("  Flagging column\t", newOrder[j], "\n")
          }
        }
      }
    }
  }
  deletecol <- deletecol[deletecol != 0]
  newOrder[deletecol]
}






# Alternative:
# From roc bioconductor
# Vince Carey (stvjc@channing.harvard.edu)

# trapezint <- function (x, y, a, b){
#
#   if (length(x) != length(y))
#     stop("length x must equal length y")
#   y <- y[x >= a & x <= b]
#   x <- x[x >= a & x <= b]
#   if (length(unique(x)) < 2)
#     return(NA)
#   ya <- approx(x, y, a, ties = max, rule = 2)$y
#   yb <- approx(x, y, b, ties = max, rule = 2)$y
#   x <- c(a, x, b)
#   y <- c(ya, y, yb)
#   h <- diff(x)
#   lx <- length(x)
#   0.5 * sum(h * (y[-1] + y[-lx]))
# }


# AUC_deprecated <- function(x, y, from=min(x, na.rm=TRUE), to = max(x, na.rm=TRUE),
#                 method=c("trapezoid", "step", "spline", "linear"),
#                 absolutearea = FALSE, subdivisions = 100, na.rm = FALSE, ...) {
# 
#   # calculates Area unter the curve
#   # example:
#   #   AUC( x=c(1,2,3,5), y=c(0,1,1,2))
#   #   AUC( x=c(2,3,4,5), y=c(0,1,1,2))
# 
#   if(na.rm) {
#     idx <- complete.cases(cbind(x,y))
#     x <- x[idx]
#     y <- y[idx]
#   }
# 
#   if (length(x) != length(y))
#     stop("length x must equal length y")
# 
#   idx <- order(x)
#   x <- x[idx]
#   y <- y[idx]
# 
#   switch( match.arg( arg=method, choices=c("trapezoid","step","spline","linear") )
#           , "trapezoid" = { a <- sum((apply( cbind(y[-length(y)], y[-1]), 1, mean))*(x[-1] - x[-length(x)])) }
#           , "step" = { a <- sum( y[-length(y)] * (x[-1] - x[-length(x)])) }
#           , "linear" = {
#                 a <- MESS_auc(x, y, from = from , to = to, type="linear",
#                                    absolutearea=absolutearea, subdivisions=subdivisions, ...)
#                        }
#           , "spline" = {
#                 a <- MESS_auc(x, y, from = from , to = to, type="spline",
#                      absolutearea=absolutearea, subdivisions=subdivisions, ...)
#             # a <- integrate(splinefun(x, y, method="natural"), lower=min(x), upper=max(x))$value
#               }
#   )
#   return(a)
# }


# New version, publish as soon as package sobir is updated

AUC <- function(x, y, from = min(x, na.rm=TRUE), to = max(x, na.rm=TRUE),
                method=c("trapezoid", "step", "spline", "linear"), absolutearea = FALSE,
                subdivisions = 100,  na.rm = FALSE, ...)  {


  if(identical(method, "linear")){
    warning("method linear is no longer supported!")
    return(NA)
  }
    
  
  # calculates Area unter the curve
  # example:
  #   AUC( x=c(1,2,3,5), y=c(0,1,1,2))
  #   AUC( x=c(2,3,4,5), y=c(0,1,1,2))

  if(na.rm) {
    idx <- complete.cases(cbind(x,y))
    x <- x[idx]
    y <- y[idx]
  }

  if (length(x) != length(y))
    stop("length x must equal length y")

  if (length(x) < 2)
    return(NA)

  o <- order(x)
  x <- x[o]
  y <- y[o]

  ox <- x[o]
  oy <- y[o]

  method <- match.arg(method)

  if (method=="trapezoid") {

    # easy and short
    # , "trapezoid" = { a <- sum((apply( cbind(y[-length(y)], y[-1]), 1, mean))*(x[-1] - x[-length(x)])) }

    ## Default option
    if (!absolutearea) {
      values <- approx(x, y, xout = sort(unique(c(from, to, x[x > from & x < to]))), ...)
      res <- 0.5 * sum(diff(values$x) * (values$y[-1] + values$y[-length(values$y)]))

    } else { ## Absolute areas

      idx <- which(diff(oy >= 0)!=0)
      newx <- c(x, x[idx] - oy[idx]*(x[idx+1]-x[idx]) / (y[idx+1]-y[idx]))
      newy <- c(y, rep(0, length(idx)))
      values <- approx(newx, newy, xout = sort(unique(c(from, to, newx[newx > from & newx < to]))), ...)

      res <- 0.5 * sum(diff(values$x) * (abs(values$y[-1]) + abs(values$y[-length(values$y)])))

    }

  } else if (method=="step") {

    # easy and short
    # , "step" = { a <- sum( y[-length(y)] * (x[-1] - x[-length(x)])) }

    ## Default option
    if (!absolutearea) {
      values <- approx(x, y, xout = sort(unique(c(from, to, x[x > from & x < to]))), ...)

      res <- sum(diff(values$x) * values$y[-length(values$y)])
      # res <- sum( y[-length(y)] * (x[-1] - x[-length(x)]))

    } else { ## Absolute areas

      idx <- which(diff(oy >= 0)!=0)
      newx <- c(x, x[idx] - oy[idx]*(x[idx+1]-x[idx]) / (y[idx+1]-y[idx]))
      newy <- c(y, rep(0, length(idx)))
      values <- approx(newx, newy, xout = sort(unique(c(from, to, newx[newx > from & newx < to]))), ...)

      res <- sum(diff(values$x) * abs(values$y[-length(values$y)]))

    }

  } else if (method=="spline") {

    if (absolutearea)
      myfunction <- function(z) { abs(splinefun(x, y, method="natural")(z)) }
    else
      myfunction <- splinefun(x, y, method="natural")

    res <- integrate(myfunction, lower=from, upper=to, subdivisions=subdivisions)$value

  }

  return(res)

}



MESS_auc <- function(x, y, from = min(x, na.rm=TRUE), to = max(x, na.rm=TRUE), type=c("linear", "spline"),
                     absolutearea=FALSE, subdivisions =100, ...) {
  
  type <- match.arg(type)
  
  # Sanity checks
  stopifnot(length(x) == length(y))
  stopifnot(!is.na(from))
  
  if (length(unique(x)) < 2)
    return(NA)
  
  if (type=="linear") {
    ## Default option
    if (absolutearea==FALSE) {
      values <- approx(x, y, xout = sort(unique(c(from, to, x[x > from & x < to]))), ...)
      res <- 0.5 * sum(diff(values$x) * (values$y[-1] + values$y[-length(values$y)]))
    } else { ## Absolute areas
      ## This is done by adding artificial dummy points on the x axis
      o <- order(x)
      ox <- x[o]
      oy <- y[o]
      
      idx <- which(diff(oy >= 0)!=0)
      newx <- c(x, x[idx] - oy[idx]*(x[idx+1]-x[idx]) / (y[idx+1]-y[idx]))
      newy <- c(y, rep(0, length(idx)))
      values <- approx(newx, newy, xout = sort(unique(c(from, to, newx[newx > from & newx < to]))), ...)
      res <- 0.5 * sum(diff(values$x) * (abs(values$y[-1]) + abs(values$y[-length(values$y)])))
    }
    
  } else { ## If it is not a linear approximation
    if (absolutearea)
      myfunction <- function(z) { abs(splinefun(x, y, method="natural")(z)) }
    
    else
      myfunction <- splinefun(x, y, method="natural")
    
    res <- integrate(myfunction, lower=from, upper=to, subdivisions=subdivisions)$value
    
  }
  
  res
  
}




# library(microbenchmark)
# 
# baseMode <- function(x, narm = FALSE) {
#   if (narm) x <- x[!is.na(x)]
#   ux <- unique(x)
#   ux[which.max(table(match(x, ux)))]
# }
# x <- round(rnorm(1e7) *100, 4)
# microbenchmark(Mode(x), baseMode(x), DescTools:::fastMode(x), times = 15, unit = "relative")
# 


# mode value, the most frequent element
Mode <- function(x, na.rm=FALSE) {
  
  # // Source
  # // https://stackoverflow.com/questions/55212746/rcpp-fast-statistical-mode-function-with-vector-input-of-any-type
  # // Author: Ralf Stubner, Joseph Wood
  
  if(!is.atomic(x) | is.matrix(x)) stop("Mode supports only atomic vectors. Use sapply(*, Mode) instead.")
  
  if (na.rm) 
    x <- x[!is.na(x)]
  
  if (anyNA(x)) 
    # there are NAs, so no mode exist nor frequency
    return(structure(NA_real_, freq = NA_integer_))
  
  if(length(x) == 1L)
    # only one value in x, x is the mode
    # return(structure(x, freq = 1L)) 
    # changed to: only one value in x, no mode defined
    return(structure(NA_real_, freq = NA_integer_))
  
  # we don't have NAs so far, either there were then we've already stopped
  # or they've been stripped above
  res <- fastModeX(x, narm=FALSE)
  
  # no mode existing, if max freq is only 1 observation
  if(length(res)== 0L & attr(res, "freq")==1L)
    return(structure(NA_real_, freq = NA_integer_))
  
  else
    # order results kills the attribute
    return(structure(res[order(res)], freq = attr(res, "freq")))

}



Gmean <- function (x, method = c("classic", "boot"),
                   conf.level = NA, sides = c("two.sided","left","right"),
                   na.rm = FALSE, ...) {

  # see also: http://www.stata.com/manuals13/rameans.pdf

  if(na.rm) x <- na.omit(x)
  
  if(any(is.na(x) | (is_neg <- x < 0))){
    
    if(any(na.omit(is_neg))) 
      warning("x contains negative values")

    if(is.na(conf.level))
      NA
    else
      c(NA, NA, NA)
    
  } else if(any(x==0)) {
    
    if(is.na(conf.level))
      0
    else
      c(0, NA, NA)
    
  } else {
    
    if(is.na(conf.level))
      exp(mean(log(x)))
    
    else
      exp(MeanCI(x=log(x), method = method,
                 conf.level = conf.level, sides = sides, ...))
  }

}





Gsd <- function (x, na.rm = FALSE) {

  if(na.rm) x <- na.omit(x)
  is.na(x) <- x <= 0

  exp(sd(log(x)))
}



Hmean <- function(x, method = c("classic", "boot"),
                  conf.level = NA, sides = c("two.sided","left","right"),
                  na.rm = FALSE, ...) {

  # see also for alternative ci
  # https://www.unistat.com/guide/confidence-intervals/
  
  is.na(x) <- x <= 0

  if(is.na(conf.level))
    res <- 1 / mean(1/x, na.rm = na.rm)

  else {
  #   res <- (1 / MeanCI(x = 1/x, method = method,
  #                      conf.level = conf.level, sides = sides, na.rm=na.rm, ...))
  #
  #   if(!is.na(conf.level)){
  #     res[2:3] <- c(min(res[2:3]), max(res[2:3]))
  #     if(res[2] < 0)
  #       res[c(2,3)] <- NA
  #   }
  #

    sides <- match.arg(sides, choices = c("two.sided", "left",
                                          "right"), several.ok = FALSE)
    if (sides != "two.sided")
      conf.level <- 1 - 2 * (1 - conf.level)

    res <- (1/(mci <- MeanCI(x = 1/x, method = method, conf.level = conf.level,
                     sides = "two.sided", na.rm = na.rm, ...)))[c(1, 3, 2)]
    
    # check if lower ci < 0, if so return NA, as CI not defined see Stata definition
    if( mci[2] <= 0) 
      res[2:3] <- NA
    
    names(res) <- names(res)[c(1,3,2)]

    if (sides == "left")
      res[3] <- Inf
    else if (sides == "right")
      # it's not clear, if we should not set this to 0
      res[2] <- NA

  }

  return(res)

}



TukeyBiweight <- function(x, const=9, na.rm = FALSE, conf.level = NA, ci.type = "bca", R=1000, ...) {

  if(na.rm) x <- na.omit(x)
  if(anyNA(x)) return(NA)

  if(is.na(conf.level)){
    #  .Call("tbrm", as.double(x[!is.na(x)]), const)
    # res <- .Call("tbrm", PACKAGE="DescTools", as.double(x), const)
    res <- .Call("_DescTools_tbrm", PACKAGE = "DescTools", x, const)
    
  } else {


    # adjusted bootstrap percentile (BCa) interval
    boot.tbw <- boot(x, function(x, d) 
      .Call("_DescTools_tbrm", PACKAGE="DescTools", x[d], const), R=R, ...)
    ci <- boot.ci(boot.tbw, conf=conf.level, type=ci.type)
    res <- c(tbw=boot.tbw$t0, lwr.ci=ci[[4]][4], upr.ci=ci[[4]][5])
  }

  return(res)

}



## Originally from  /u/ftp/NDK/Source-NDK-9/R/rg2-fkt.R :
.tauHuber <- function(x, mu, k=1.345, s = mad(x), resid = (x - mu)/s) {
  ## Purpose: Korrekturfaktor Tau fuer die Varianz von Huber-M-Schaetzern
  ## -------------------------------------------------------------------------
  ## Arguments: x = Daten mu = Lokations-Punkt k = Parameter der Huber Psi-Funktion
  ## -------------------------------------------------------------------------
  ## Author: Rene Locher Update: R. Frisullo 23.4.02;  M.Maechler (as.log(); s, resid)
  inr <- abs(resid) <= k
  psi  <- ifelse(inr, resid, sign(resid)*k)                # psi (x)
  psiP <- as.logical(inr)# = ifelse(abs(resid) <= k, 1, 0) # psi'(x)
  length(x) * sum(psi^2) / sum(psiP)^2
}

.wgt.himedian <- function(x, weights = rep(1,n)) {

  # Purpose: weighted hiMedian of x
  # Author: Martin Maechler, Date: 14 Mar 2002
  n <- length(x <- as.double(x))
  stopifnot(storage.mode(weights) %in% c("integer", "double"))
  if(n != length(weights))
    stop("'weights' must have same length as 'x'")
  # if(is.integer(weights)) message("using integer weights")
  # Original
  # .C(if(is.integer(weights)) "wgt_himed_i" else "wgt_himed",
  #    x, n, weights,
  #    res = double(1))$res

  if(is.integer(weights))
    .C("wgt_himed_i",
     x, n, weights,
     res = double(1))$res
  else
    .C("wgt_himed",
       x, n, weights,
       res = double(1))$res

}


##  A modified "safe" (and more general) Huber estimator:
.huberM <-
  function(x, k = 1.345, weights = NULL,
           tol = 1e-06,
           mu = if(is.null(weights)) median(x) else .wgt.himedian(x, weights),
           s = if(is.null(weights)) mad(x, center=mu)
           else .wgt.himedian(abs(x - mu), weights),
           se = FALSE,
           warn0scale = getOption("verbose"))
  {
    ## Author: Martin Maechler, Date: 6 Jan 2003, ff

    ## implicit 'na.rm = TRUE':
    if(any(i <- is.na(x))) {
      x <- x[!i]
      if(!is.null(weights)) weights <- weights[!i]
    }
    n <- length(x)
    sum.w <-
      if(!is.null(weights)) {
        stopifnot(is.numeric(weights), weights >= 0, length(weights) == n)
        sum(weights)
      } else n
    it <- 0L
    NA. <- NA_real_
    if(sum.w == 0) # e.g 'x' was all NA
      return(list(mu = NA., s = NA., it = it, se = NA.)) # instead of error

    if(se && !is.null(weights))
      stop("Std.error computation not yet available for the case of 'weights'")
    if (s <= 0) {
      if(s < 0) stop("negative scale 's'")
      if(warn0scale && n > 1)
        warning("scale 's' is zero -- returning initial 'mu'")
    }
    else {
      wsum <- if(is.null(weights)) sum else function(u) sum(u * weights)
      repeat {
        it <- it + 1L
        y <- pmin(pmax(mu - k * s, x), mu + k * s)
        mu1 <- wsum(y) / sum.w
        if (abs(mu - mu1) < tol * s)
          break
        mu <- mu1
      }
    }
    list(mu = mu, s = s, it = it,
         SE = if(se) s * sqrt(.tauHuber(x, mu=mu, s=s, k=k) / n) else NA.)
  }


HuberM <- function(x, k = 1.345, mu = median(x), s = mad(x, center=mu),
                   na.rm = FALSE, conf.level = NA, ci.type = c("wald", "boot"), ...){

  # new interface to HuberM, making it less complex
  # refer to robustbase::huberM if more control is required

  if(na.rm) x <- na.omit(x)
  if(anyNA(x)) return(NA)


  if(is.na(conf.level)){
    res <- .huberM(x=x, k=k, mu=mu, s=s, warn0scale=TRUE)$mu

    return(res)

  } else {

    switch(match.arg(ci.type)
           ,"wald"={
             res <- .huberM(x=x, k=k, mu=mu, s=s, se=TRUE, warn0scale=TRUE)
             # Solution: (12.6.06) - Robuste Regression (Rg-2d) - Musterloeungen zu Serie 1
             # r.loc$mu + c(-1,1)*qt(0.975,8)*sqrt(t.tau/length(d.ertrag))*r.loc$s
             #
             # Ruckstuhl's Loesung:
             # (Sleep.HM$mu + c(-1,1)*qt(0.975, length(Sleep)-1) *
             #              sqrt(f.tau(Sleep, Sleep.HM$mu)) * Sleep.HM$s/sqrt(length(Sleep)))

             #             ci <- qnorm(1-(1-conf.level)/2) * res$SE
             ci <- qt(1-(1-conf.level)/2, length(x)-1) *
               sqrt(.tauHuber(x, res$mu, k=k)) * res$s/sqrt(length(x))
             res <- c(hm=res$mu, lwr.ci=res$mu - ci, upr.ci=res$mu + ci)
           }
           ,"boot" ={
             R <- InDots(..., arg="R", default=1000)
             bci.type <- InDots(..., arg="type", default="perc")

             boot.hm <- boot(x, function(x, d){
               hm <- .huberM(x=x[d], k=k, mu=mu, s=s, se=TRUE)
               return(c(hm$mu, hm$s^2))
             }, R=R)
             ci <- boot.ci(boot.hm, conf=conf.level, ...)

             if(ci.type =="norm") {
               lwr.ci <- ci[[4]][2]
               upr.ci <- ci[[4]][3]
             } else {
               lwr.ci <- ci[[4]][4]
               upr.ci <- ci[[4]][5]
             }

             res <- c(hm=boot.hm$t0[1], lwr.ci=lwr.ci, upr.ci=upr.ci)

           }
    )
    return(res)

  }

}




# old version, replace 13.5.2015
#
# #  A modified "safe" (and more general) Huber estimator:
# HuberM <- function(x, k = 1.5, weights = NULL, tol = 1e-06,
# 	     mu = if(is.null(weights)) median(x) else wgt.himedian(x, weights),
# 	     s = if(is.null(weights)) mad(x, center=mu) else wgt.himedian(abs(x - mu), weights),
# 	     se = FALSE, warn0scale = getOption("verbose"), na.rm = FALSE, stats = FALSE) {
#
#     # Author: Martin Maechler, Date: 6 Jan 2003, ff
#
#     # Originally from  /u/ftp/NDK/Source-NDK-9/R/rg2-fkt.R :
#     tauHuber <- function(x, mu, k=1.5, s = mad(x), resid = (x - mu)/s) {
#       # Purpose: Korrekturfaktor Tau fuer die Varianz von Huber-M-Schaetzern
#       # ******************************************************************************
#       # Arguments: x = Daten mu = Lokations-Punkt k = Parameter der Huber Psi-Funktion
#       # ******************************************************************************
#       # Author: Rene Locher Update: R. Frisullo 23.4.02;  M.Maechler (as.log(); s, resid)
#       inr <- abs(resid) <= k
#       psi  <- ifelse(inr, resid, sign(resid)*k)                 #### psi (x)
#       psiP <- as.logical(inr) # = ifelse(abs(resid) <= k, 1, 0) #### psi'(x)
#       length(x) * sum(psi^2) / sum(psiP)^2
#     }
#
#     wgt.himedian <- function(x, weights = rep(1,n)) {
#
#         # Purpose: weighted hiMedian of x
#         # Author: Martin Maechler, Date: 14 Mar 2002
#         n <- length(x <- as.double(x))
#         stopifnot(storage.mode(weights) %in% c("integer", "double"))
#         if(n != length(weights))
#       stop("'weights' must have same length as 'x'")
#         # if(is.integer(weights)) message("using integer weights")
#         .C(if(is.integer(weights)) "wgt_himed_i" else "wgt_himed",
#            x, n, weights,
#            res = double(1))$res
#     }
#
#
#     # Andri: introduce na.rm
#     # old: implicit 'na.rm = TRUE'
#     if(na.rm) {
#         i <- is.na(x)
#         x <- x[!i]
#         if(!is.null(weights)) weights <- weights[!i]
#     } else {
#       if(anyNA(x)) return(NA)
#     }
#
#
#     n <- length(x)
#     sum.w <-
#         if(!is.null(weights)) {
#             stopifnot(is.numeric(weights), weights >= 0, length(weights) == n)
#             sum(weights)
#         } else n
#     it <- 0L
#     NA. <- NA_real_
#     if(sum.w == 0) # e.g 'x' was all NA
# 	return(list(mu = NA., s = NA., it = it, se = NA.)) # instead of error
#
#     if(se && !is.null(weights))
# 	stop("Std.error computation not yet available for the case of 'weights'")
#
#     if (s <= 0) {
#         if(s < 0) stop("negative scale 's'")
#         if(warn0scale && n > 1)
#             warning("scale 's' is zero -- returning initial 'mu'")
#     }
#     else {
#         wsum <- if(is.null(weights)) sum else function(u) sum(u * weights)
#
# 	repeat {
# 	    it <- it + 1L
#             y <- pmin(pmax(mu - k * s, x), mu + k * s)
# 	    mu1 <- wsum(y) / sum.w
# 	    if (abs(mu - mu1) < tol * s)
# 		break
# 	    mu <- mu1
# 	}
#     }
#
#   if(stats)
#     res <- list(mu = mu, s = s, it = it,
#              SE = if(se) s * sqrt(tauHuber(x, mu=mu, s=s, k=k) / n) else NA.)
#   else
#     res <- mu
#
#   return(res)
#
# }



HodgesLehmann <- function(x, y = NULL, conf.level = NA, na.rm = FALSE) {

  #   Werner Stahel's version:
  #
  #   f.HodgesLehmann <- function(data)
  #   {
  #     ## Purpose:   Hodges-Lehmann estimate and confidence interval
  #     ## -------------------------------------------------------------------------
  #     ## Arguments:
  #     ## Remark: function changed so that CI covers >= 95%, before it was too
  #     ##         small (9/22/04)
  #     ## -------------------------------------------------------------------------
  #     ## Author: Werner Stahel, Date: 12 Aug 2002, 14:13
  #     ## Update: Beat Jaggi, Date: 22 Sept 2004
  #     .cexact <-
  #       # c(NA,NA,NA,NA,NA,21,26,33,40,47,56,65,74,84,95,107,119,131,144,158)
  #       c(NA,NA,NA,NA,NA,22,27,34,41,48,57,66,75,85,96,108,120,132,145,159)
  #     .d <- na.omit(data)
  #     .n <- length(.d)
  #     .wa <- sort(c(outer(.d,.d,"+")/2)[outer(1:.n,1:.n,"<=")])
  #     .c <- if (.n<=length(.cexact)) .n*(.n+1)/2+1-.cexact[.n] else
  #       floor(.n*(.n+1)/4-1.96*sqrt(.n*(.n+1)*(2*.n+1)/24))
  #     .r <- c(median(.wa), .wa[c(.c,.n*(.n+1)/2+1-.c)])
  #     names(.r) <- c("estimate","lower","upper")
  #     .r
  #   }

  if(na.rm) {
    if(is.null(y))
      x <- na.omit(x)
    else {
      ok <- complete.cases(x, y)
      x <- x[ok]
      y <- y[ok]
    }
  }

  if(anyNA(x) || (!is.null(y) && anyNA(y)))
    if(is.na(conf.level))
      return(NA)
  else
    return(c(est=NA,  lwr.ci=NA, upr.ci=NA))

  
  #  res <- wilcox.test(x,  y, conf.int = TRUE, conf.level = Coalesce(conf.level, 0.8))
  if(is.null(y)){
    res <- .Call("_DescTools_hlqest", PACKAGE = "DescTools", x)
  } else {
    res <- .Call("_DescTools_hl2qest", PACKAGE = "DescTools", x, y)
  }

  if(is.na(conf.level)){
    result <-  res
    names(result) <- NULL
    
  } else {
    
    n <- length(x)
    
    # lci <- n^2/2 + qnorm((1-conf.level)/2) * sqrt(n^2 * (2*n+1)/12) - 0.5
    # uci <- n^2/2 - qnorm((1-conf.level)/2) * sqrt(n^2 * (2*n+1)/12) - 0.5
    lci <- uci <- NA
    warning("Confidence intervals not yet implemented for Hodges-Lehman-Estimator.")
    
    result <- c(est=res,  lwr.ci=lci, upr.ci=uci)
  }

  return(result)

}



Skew <- function (x, weights=NULL, na.rm = FALSE, method = 3, conf.level = NA, ci.type = "bca", R=1000, ...) {

  # C part for the expensive (x - mean(x))^2 etc. is a kind of 14 times faster
  #   > x <- rchisq(100000000, df=2)
  #   > system.time(Skew(x))
  #   user  system elapsed
  #   6.32    0.30    6.62
  #   > system.time(Skew2(x))
  #   user  system elapsed
  #   0.47    0.00    0.47


  i.skew <- function(x, weights=NULL, method = 3) {

    # method 1: older textbooks
    if(!is.null(weights)){
      # use a standard treatment for weights
      z <- .NormWeights(x, weights, na.rm=na.rm, zero.rm=TRUE)
      r.skew <- .Call("rskeww", 
                      as.numeric(z$x), as.numeric(Mean(z$x, weights = z$weights)), 
                      as.numeric(z$weights), PACKAGE="DescTools")
      n <- z$wsum
      
    } else {
      if (na.rm) x <- na.omit(x)
      r.skew <- .Call("rskew", as.numeric(x), 
                      as.numeric(mean(x)), PACKAGE="DescTools")
      n <- length(x)
      
    }

    se <- sqrt((6*(n-2))/((n+1)*(n+3)))

    if (method == 2) {
      # method 2: SAS/SPSS
      r.skew <- r.skew * n^0.5 * (n - 1)^0.5/(n - 2)
      se <- se * sqrt(n*(n-1))/(n-2)
    }
    else if (method == 3) {
      # method 3: MINITAB/BDMP
      r.skew <- r.skew * ((n - 1)/n)^(3/2)
      se <- se * ((n - 1)/n)^(3/2)
    }
    return(c(r.skew, se^2))
  }


  if(is.na(conf.level)){
    res <- i.skew(x, weights=weights, method=method)[1]

  } else {

    if(ci.type == "classic") {
      res <- i.skew(x, weights=weights, method=method)
      res <- c(skewness=res[1],
               lwr.ci=qnorm((1-conf.level)/2) * sqrt(res[2]),
               upr.ci=qnorm(1-(1-conf.level)/2) * sqrt(res[2]))

    } else {
      # Problematic standard errors and confidence intervals for skewness and kurtosis.
      # Wright DB, Herrington JA. (2011) recommend only bootstrap intervals
      # adjusted bootstrap percentile (BCa) interval
      boot.skew <- boot(x, function(x, d) i.skew(x[d], weights=weights, method=method), R=R, ...)
      ci <- boot.ci(boot.skew, conf=conf.level, type=ci.type)
      if(ci.type =="norm") {
        lwr.ci <- ci[[4]][2]
        upr.ci <- ci[[4]][3]
      } else {
        lwr.ci <- ci[[4]][4]
        upr.ci <- ci[[4]][5]
      }
      
      res <- c(skew=boot.skew$t0[1], lwr.ci=lwr.ci, upr.ci=upr.ci)
    }
  }

  return(res)

}




Kurt <- function (x, weights=NULL, na.rm = FALSE, method = 3, conf.level = NA, 
                  ci.type = "bca", R=1000, ...) {

  i.kurt <- function(x, weights=NULL, na.rm = FALSE, method = 3) {

    # method 1: older textbooks
    if(!is.null(weights)){
      # use a standard treatment for weights
      z <- .NormWeights(x, weights, na.rm=na.rm, zero.rm=TRUE)
      r.kurt <- .Call("rkurtw", as.numeric(z$x), as.numeric(Mean(z$x, weights = z$weights)), as.numeric(z$weights), PACKAGE="DescTools")
      n <- z$wsum
      
    } else {
      if (na.rm) x <- na.omit(x)
      r.kurt <- .Call("rkurt", as.numeric(x), as.numeric(mean(x)), PACKAGE="DescTools")
      n <- length(x)
      
    }
    
    se <- sqrt((24*n*(n-2)*(n-3))/((n+1)^2*(n+3)*(n+5)))

    if (method == 2) {
      # method 2: SAS/SPSS
      r.kurt <- ((r.kurt + 3) * (n + 1)/(n - 1) - 3) * (n - 1)^2/(n - 2)/(n - 3)
      se <- se * (((n-1)*(n+1))/((n-2)*(n-3)))
    }
    else if (method == 3) {
      # method 3: MINITAB/BDMP
      r.kurt <- (r.kurt + 3) * (1 - 1/n)^2 - 3
      se <- se * ((n-1)/n)^2
    }
    return(c(r.kurt, se^2))
  }

  if(is.na(conf.level)){
    res <- i.kurt(x, weights=weights, na.rm=na.rm, method=method)[1]

  } else {
    if(ci.type == "classic") {
      res <- i.kurt(x, weights=weights, method=method)
      res <- c(kurtosis=res[1],
               lwr.ci=qnorm((1-conf.level)/2) * sqrt(res[2]),
               upr.ci=qnorm(1-(1-conf.level)/2) * sqrt(res[2]))

    } else {

      # Problematic standard errors and confidence intervals for skewness and kurtosis.
      # Wright DB, Herrington JA. (2011) recommend only bootstrap intervals
      # adjusted bootstrap percentile (BCa) interval
      boot.kurt <- boot(x, function(x, d) i.kurt(x[d], weights=weights, na.rm=na.rm, method=method), R=R, ...)
      ci <- boot.ci(boot.kurt, conf=conf.level, type=ci.type)

      if(ci.type =="norm") {
        lwr.ci <- ci[[4]][2]
        upr.ci <- ci[[4]][3]
      } else {
        lwr.ci <- ci[[4]][4]
        upr.ci <- ci[[4]][5]
      }

      res <- c(kurt=boot.kurt$t0[1], lwr.ci=lwr.ci, upr.ci=upr.ci)
    }
  }

  return(res)

}



Outlier <- function(x, method=c("boxplot", "hampel"), value=TRUE, na.rm=FALSE){

  switch(match.arg(arg = method, choices = c("boxplot", "hampel")),
         #         boxplot =  { x[x %)(% (quantile(x, c(0.25,0.75), na.rm=na.rm) + c(-1,1) * 1.5*IQR(x,na.rm=na.rm))] }
         boxplot =  {
           # old, replaced by v. 0.99.26
           # res <- boxplot(x, plot = FALSE)$out

             qq <- quantile(as.numeric(x), c(0.25, 0.75), na.rm = na.rm, names = FALSE)
             iqr <- diff(qq)
             id <- x < (qq[1] - 1.5 * iqr) | x > (qq[2] + 1.5 * iqr)

           },
         
         hampel = {
           # hampel considers values outside of median ± 3*(median absolute deviation) to be outliers
           id <- x %][% (median(x, na.rm=na.rm) + 3 * c(-1, 1) * mad(x, na.rm=na.rm))
         }
  )

  if(value)
    res <- x[id]
  else
    res <- which(id)
  
  res <- res[!is.na(res)]
  
  return(res)

}



LOF <- function(data,k) {

  # source: library(dprep)

  # A function that finds the local outlier factor (Breunig,2000) of
  # the matrix "data" with k neighbors
  # Adapted by Caroline Rodriguez and Edgar Acuna, may 2004

  knneigh.vect <-
    function(x,data,k)
    {
      #Function that returns the distance from a vector "x" to
      #its k-nearest-neighbors in the matrix "data"

      temp=as.matrix(data)
      numrow=dim(data)[1]
      dimnames(temp)=NULL

      #subtract rowvector x from each row of data
      difference<- scale(temp, x, FALSE)

      #square and add all differences and then take the square root
      dtemp <- drop(difference^2 %*% rep(1, ncol(data)))
      dtemp=sqrt(dtemp)

      #order the distances
      order.dist <- order(dtemp)
      nndist=dtemp[order.dist]

      #find distance to k-nearest neighbor
      #uses k+1 since first distance in vector is a 0
      knndist=nndist[k+1]

      #find neighborhood
      #eliminate first row of zeros from neighborhood
      neighborhood=drop(nndist[nndist<=knndist])
      neighborhood=neighborhood[-1]
      numneigh=length(neighborhood)

      #find indexes of each neighbor in the neighborhood
      index.neigh=order.dist[1:numneigh+1]

      # this will become the index of the distance to first neighbor
      num1=length(index.neigh)+3

      # this will become the index of the distance to last neighbor
      num2=length(index.neigh)+numneigh+2

      #form a vector
      neigh.dist=c(num1,num2,index.neigh,neighborhood)

      return(neigh.dist)
    }



  dist.to.knn <-
    function(dataset,neighbors)
    {

      #function returns an object in which each column contains
      #the indices of the first k neighbors followed by the
      #distances to each of these neighbors

      numrow=dim(dataset)[1]

      #applies a function to find distance to k nearest neighbors
      #within "dataset" for each row of the matrix "dataset"

      knndist=rep(0,0)


      for (i in 1:numrow)
      {
        #find obervations that make up the k-distance neighborhood for dataset[i,]
        neighdist=knneigh.vect(dataset[i,],dataset,neighbors)

        #adjust the length of neighdist or knndist as needed to form matrix of neighbors
        #and their distances
        if (i==2)
        {
          if (length(knndist)<length(neighdist))
          {
            z=length(neighdist)-length(knndist)
            zeros=rep(0,z)
            knndist=c(knndist,zeros)
          }
          else if (length(knndist)>length(neighdist))
          {
            z=length(knndist)-length(neighdist)
            zeros=rep(0,z)
            neighdist=c(neighdist,zeros)
          }
        }
        else
        {
          if (i!=1)
          {
            if (dim(knndist)[1]<length(neighdist))
            {
              z=(length(neighdist)-dim(knndist)[1])
              zeros=rep(0,z*dim(knndist)[2])
              zeros=matrix(zeros,z,dim(knndist)[2])
              knndist=rbind(knndist,zeros)
            }
            else if (dim(knndist)[1]>length(neighdist))
            {
              z=(dim(knndist)[1]-length(neighdist))
              zeros=rep(0,z)
              neighdist=c(neighdist,zeros)
            }
          }
        }
        knndist=cbind(knndist,neighdist)
      }

      return(knndist)
    }


  reachability <-
    function(distdata,k)
    {
      # function that calculates the local reachability density
      # of Breuing(2000) for each observation in a matrix, using
      # a matrix (distdata) of k nearest neighbors computed by the function dist.to.knn2

      p=dim(distdata)[2]
      lrd=rep(0,p)

      for (i in 1:p)
      {
        j=seq(3,3+(distdata[2,i]-distdata[1,i]))
        # compare the k-distance from each observation to its kth neighbor
        # to the actual distance between each observation and its neighbors
        numneigh=distdata[2,i]-distdata[1,i]+1
        temp=rbind(diag(distdata[distdata[2,distdata[j,i]],distdata[j,i]]),distdata[j+numneigh,i])

        # calculate reachability
        reach=1/(sum(apply(temp,2,max))/numneigh)
        lrd[i]=reach
      }
      lrd
    }


  data=as.matrix(data)

  # find k nearest neighbors and their distance from each observation
  # in data
  distdata=dist.to.knn(data,k)
  p=dim(distdata)[2]

  # calculate the local reachability density for each observation in data
  lrddata=reachability(distdata,k)

  lof=rep(0,p)

  # computer the local outlier factor of each observation in data
  for ( i in 1:p)
  {
    nneigh=distdata[2,i]-distdata[1,i]+1
    j=seq(0,(nneigh-1))
    local.factor=sum(lrddata[distdata[3+j,i]]/lrddata[i])/nneigh
    lof[i]=local.factor
  }

  # return lof, a vector with the local outlier factor of each observation
  lof
}




BootCI <- function(x, y=NULL, FUN, ..., bci.method = c("norm", "basic", "stud", "perc", "bca"),
                   conf.level = 0.95, sides = c("two.sided", "left", "right"), R = 999) {

  dots <- as.list(substitute(list( ... ))) [-1]
  bci.method <- match.arg(bci.method)

  sides <- match.arg(sides, choices = c("two.sided","left","right"), several.ok = FALSE)
  if(sides!="two.sided")
    conf.level <- 1 - 2*(1-conf.level)

  if(is.null(y))
    boot.fun <- boot(x, function(x, d) do.call(FUN, append(list(x[d]), dots)), R = R)
  else
    boot.fun <- boot(x, function(x, d) do.call(FUN, append(list(x[d], y[d]), dots)), R = R)

  ci <- boot.ci(boot.fun, conf=conf.level, type=bci.method)

  if (bci.method == "norm") {
    res <- c(est = boot.fun$t0, lwr.ci = ci[[4]][2],
             upr.ci = ci[[4]][3])

  } else {
    res <- c(est = boot.fun$t0, lwr.ci = ci[[4]][4],
             upr.ci = ci[[4]][5])
  }

  if(sides=="left")
    res[3] <- Inf
  else if(sides=="right")
    res[2] <- -Inf

  names(res)[1] <- deparse(substitute(FUN))
  return(res)

}





# Confidence Intervals for Binomial Proportions
BinomCI <- function(x, n, conf.level = 0.95, sides = c("two.sided","left","right"),
                    method = c("wilson", "wald", "waldcc", "agresti-coull", "jeffreys", "modified wilson", "wilsoncc",
                                "modified jeffreys", "clopper-pearson", "arcsine", "logit", "witting", "pratt", "midp", "lik", "blaker"), 
                    rand = 123, tol=1e-05, std_est=TRUE) {

  if(missing(method)) method <- "wilson"
  if(missing(sides)) sides <- "two.sided"

  iBinomCI <- function(x, n, conf.level = 0.95, sides = c("two.sided","left","right"),
                       method = c("wilson", "wilsoncc", "wald", "waldcc","agresti-coull", "jeffreys", "modified wilson",
                       "modified jeffreys", "clopper-pearson", "arcsine", "logit", "witting", "pratt", "midp", "lik", "blaker"), 
                       rand = 123, tol=1e-05, std_est=TRUE) {

    if(length(x) != 1) stop("'x' has to be of length 1 (number of successes)")
    if(length(n) != 1) stop("'n' has to be of length 1 (number of trials)")
    if(length(conf.level) != 1)  stop("'conf.level' has to be of length 1 (confidence level)")
    if(conf.level < 0.5 | conf.level > 1)  stop("'conf.level' has to be in [0.5, 1]")

    
    method <- match.arg(arg=method, 
                        choices=c("wilson", "wald", "waldcc", "wilsoncc","agresti-coull", 
                                  "jeffreys", "modified wilson",
                                  "modified jeffreys", "clopper-pearson", "arcsine", 
                                  "logit", "witting","pratt", "midp", "lik", "blaker"))
              
    sides <- match.arg(sides, choices = c("two.sided","left","right"), 
                       several.ok = FALSE)
    if(sides!="two.sided")
      conf.level <- 1 - 2*(1-conf.level)

    alpha <- 1 - conf.level
    kappa <- qnorm(1-alpha/2)
    p.hat <- x/n
    q.hat <- 1 - p.hat

    # this is the default estimator used by the most (but not all) methods
    est <- p.hat

    switch( method
            , "wald" = {
              term2 <- kappa*sqrt(p.hat*q.hat)/sqrt(n)
              CI.lower <- max(0, p.hat - term2)
              CI.upper <- min(1, p.hat + term2)
            }
            , "waldcc" = {
              term2 <- kappa*sqrt(p.hat*q.hat)/sqrt(n)
              # continuity correction
              term2 <- term2 + 1/(2*n)
              CI.lower <- max(0, p.hat - term2)
              CI.upper <- min(1, p.hat + term2)
            }
            , "wilson" = {
              
              # non standard estimator
              if(!std_est){
                
                x.tilde <- x + kappa^2/2
                n.tilde <- n + kappa^2
                p.tilde <- x.tilde/n.tilde
                
                est <- p.tilde
              }
              
              term1 <- (x + kappa^2/2)/(n + kappa^2)
              term2 <- kappa*sqrt(n)/(n + kappa^2)*sqrt(p.hat*q.hat + kappa^2/(4*n))
              CI.lower <-  max(0, term1 - term2)
              CI.upper <- min(1, term1 + term2)
            }
            , "wilsoncc" = {
              
              # non standard estimator
              if(!std_est){
                
                x.tilde <- x + kappa^2/2
                n.tilde <- n + kappa^2
                p.tilde <- x.tilde/n.tilde
                
                est <- p.tilde
              }
              
              
              lci <- ( 2*x+kappa**2 -1 - kappa*sqrt(kappa**2 -
                            2- 1/n + 4*p.hat*(n*q.hat+1))) / (2*(n+kappa**2))
              uci <- ( 2*x+kappa**2 +1 + kappa*sqrt(kappa**2 +
                            2- 1/n + 4*p.hat*(n*q.hat-1))) / (2*(n+kappa**2))
              
              CI.lower <- max(0, ifelse(p.hat==0, 0, lci))
              CI.upper <- min(1, ifelse(p.hat==1, 1, uci))
              
            }
            , "agresti-coull" = {
              x.tilde <- x + kappa^2/2
              n.tilde <- n + kappa^2
              p.tilde <- x.tilde/n.tilde
              q.tilde <- 1 - p.tilde
              
              # non standard estimator
              if(!std_est)
                est <- p.tilde
              
              term2 <- kappa*sqrt(p.tilde*q.tilde)/sqrt(n.tilde)
              CI.lower <- max(0, p.tilde - term2)
              CI.upper <- min(1, p.tilde + term2)
            }
            , "jeffreys" = {
              if(x == 0)
                CI.lower <- 0
              else
                CI.lower <- qbeta(alpha/2, x+0.5, n-x+0.5)
              if(x == n)
                CI.upper <- 1
              else
                CI.upper <- qbeta(1-alpha/2, x+0.5, n-x+0.5)
            }
            , "modified wilson" = {
              
              # non standard estimator
              if(!std_est){
                
                x.tilde <- x + kappa^2/2
                n.tilde <- n + kappa^2
                p.tilde <- x.tilde/n.tilde
                
                est <- p.tilde
              }
              
              
              term1 <- (x + kappa^2/2)/(n + kappa^2)
              term2 <- kappa*sqrt(n)/(n + kappa^2)*sqrt(p.hat*q.hat + kappa^2/(4*n))
              ## comment by Andre Gillibert, 19.6.2017:
              ## old:
              ## if((n <= 50 & x %in% c(1, 2)) | (n >= 51 & n <= 100 & x %in% c(1:3)))
              ## new:
              if((n <= 50 & x %in% c(1, 2)) | (n >= 51 &            x %in% c(1:3)))
                CI.lower <- 0.5*qchisq(alpha, 2*x)/n
              else
                CI.lower <-  max(0, term1 - term2)

              ## if((n <= 50 & x %in% c(n-1, n-2)) | (n >= 51 & n <= 100 & x %in% c(n-(1:3))))
              if((n <= 50 & x %in% c(n-1, n-2)) | (n >= 51 &            x %in% c(n-(1:3))))
                CI.upper <- 1 - 0.5*qchisq(alpha, 2*(n-x))/n
              else
                CI.upper <- min(1, term1 + term2)
            }
            , "modified jeffreys" = {
              if(x == n)
                CI.lower <- (alpha/2)^(1/n)
              else {
                if(x <= 1)
                  CI.lower <- 0
                else
                  CI.lower <- qbeta(alpha/2, x+0.5, n-x+0.5)
              }
              if(x == 0)
                CI.upper <- 1 - (alpha/2)^(1/n)
              else{
                if(x >= n-1)
                  CI.upper <- 1
                else
                  CI.upper <- qbeta(1-alpha/2, x+0.5, n-x+0.5)
              }
            }
            , "clopper-pearson" = {
              CI.lower <- qbeta(alpha/2, x, n-x+1)
              CI.upper <- qbeta(1-alpha/2, x+1, n-x)
            }
            , "arcsine" = {
              p.tilde <- (x + 0.375)/(n + 0.75)
              
              # non standard estimator
              if(!std_est)
                est <- p.tilde

              CI.lower <- sin(asin(sqrt(p.tilde)) - 0.5*kappa/sqrt(n))^2
              CI.upper <- sin(asin(sqrt(p.tilde)) + 0.5*kappa/sqrt(n))^2
            }
            , "logit" = {
              lambda.hat <- log(x/(n-x))
              V.hat <- n/(x*(n-x))
              lambda.lower <- lambda.hat - kappa*sqrt(V.hat)
              lambda.upper <- lambda.hat + kappa*sqrt(V.hat)
              CI.lower <- exp(lambda.lower)/(1 + exp(lambda.lower))
              CI.upper <- exp(lambda.upper)/(1 + exp(lambda.upper))
              
            }
            , "witting" = {
              set.seed(rand)
              x.tilde <- x + runif(1, min = 0, max = 1)
              pbinom.abscont <- function(q, size, prob){
                v <- trunc(q)
                term1 <- pbinom(v-1, size = size, prob = prob)
                term2 <- (q - v)*dbinom(v, size = size, prob = prob)
                return(term1 + term2)
              }
              qbinom.abscont <- function(p, size, x){
                fun <- function(prob, size, x, p){
                  pbinom.abscont(x, size, prob) - p
                }
                uniroot(fun, interval = c(0, 1), size = size, x = x, p = p)$root
              }
              CI.lower <- qbinom.abscont(1-alpha, size = n, x = x.tilde)
              CI.upper <- qbinom.abscont(alpha, size = n, x = x.tilde)
            }

            , "pratt" = {

              if(x==0) {
                CI.lower <- 0
                CI.upper <- 1-alpha^(1/n)
              } else if(x==1) {
                CI.lower <- 1-(1-alpha/2)^(1/n)
                CI.upper <- 1-(alpha/2)^(1/n)
              } else if(x==(n-1)) {
                CI.lower <- (alpha/2)^(1/n)
                CI.upper <- (1-alpha/2)^(1/n)
              } else if(x==n) {
                CI.lower <- alpha^(1/n)
                CI.upper <- 1
              } else {
                z <- qnorm(1 - alpha/2)

                A <- ((x+1) / (n-x))^2
                B <- 81*(x+1)*(n-x)-9*n-8
                C <- (0-3)*z*sqrt(9*(x+1)*(n-x)*(9*n+5-z^2)+n+1)
                D <- 81*(x+1)^2-9*(x+1)*(2+z^2)+1
                E <- 1+A*((B+C)/D)^3
                CI.upper <- 1/E

                A <- (x / (n-x-1))^2
                B <- 81*x*(n-x-1)-9*n-8
                C <- 3*z*sqrt(9*x*(n-x-1)*(9*n+5-z^2)+n+1)
                D <- 81*x^2-9*x*(2+z^2)+1
                E <- 1+A*((B+C)/D)^3
                CI.lower <- 1/E
              }
            }
            , "midp" = {
              
                #Functions to find root of for the lower and higher bounds of the CI
                #These are helper functions.
                f.low <- function(pi, x, n) {
                  1/2*dbinom(x, size=n, prob=pi) + 
                    pbinom(x, size=n, prob=pi, lower.tail=FALSE) - (1-conf.level)/2
                }
                f.up <- function(pi, x, n) {
                  1/2*dbinom(x, size=n, prob=pi) + 
                    pbinom(x-1, size=n, prob=pi) - (1-conf.level)/2
                }
                
                # One takes pi_low = 0 when x=0 and pi_up=1 when x=n
                CI.lower <- 0
                CI.upper <- 1
                
                # Calculate CI by finding roots of the f funcs
                if (x!=0) {
                  CI.lower <- uniroot(f.low, interval=c(0, p.hat), x=x, n=n)$root
                } 
                if (x!=n) {
                  CI.upper  <- uniroot(f.up, interval=c(p.hat, 1), x=x, n=n)$root
                }
                

            }
            , "lik" = {
              
              CI.lower <- 0
              CI.upper <- 1
              z <- qnorm(1 - alpha * 0.5)
              # preset tolerance, should we offer function argument?
              tol = .Machine$double.eps^0.5
              
              BinDev <- function(y, x, mu, wt, bound = 0, 
                                 tol = .Machine$double.eps^0.5, ...) {
                
                # returns the binomial deviance for y, x, wt
                ll.y <- ifelse(y %in% c(0, 1), 0, dbinom(x, wt, y, log=TRUE))
                ll.mu <- ifelse(mu %in% c(0, 1), 0, dbinom(x, wt, mu, log=TRUE))
                res <- ifelse(abs(y - mu) < tol, 0, 
                              sign(y - mu) * sqrt(-2 * (ll.y - ll.mu)))
                return(res - bound)
              }

              if(x!=0 && tol<p.hat) {
                CI.lower <- if(BinDev(tol, x, p.hat, n, -z, tol) <= 0) {
                  uniroot(f = BinDev, interval = c(tol, if(p.hat < tol || p.hat == 1) 1 - tol else p.hat), 
                          bound = -z, x = x, mu = p.hat, wt = n)$root }
              }

              if(x!=n && p.hat<(1-tol)) {
                CI.upper <- if(BinDev(y = 1 - tol, x = x, mu = ifelse(p.hat > 1 - tol, tol, p.hat), 
                                      wt = n, bound = z, tol = tol) < 0) {
                  CI.lower <- if(BinDev(tol, x, if(p.hat < tol || p.hat == 1) 1 - tol else p.hat, n, -z, tol) <= 0) {
                    uniroot(f = BinDev, interval = c(tol, p.hat),
                            bound = -z, x = x, mu = p.hat, wt = n)$root  }
                } else {
                  uniroot(f = BinDev, interval = c(if(p.hat > 1 - tol) tol else p.hat, 1 - tol),
                          bound = z, x = x, mu = p.hat, wt = n)$root     }
              }
            }
            , "blaker" ={
              
              acceptbin <- function (x, n, p) {
                
                p1 <- 1 - pbinom(x - 1, n, p)
                p2 <- pbinom(x, n, p)
                
                a1 <- p1 + pbinom(qbinom(p1, n, p) - 1, n, p)
                a2 <- p2 + 1 - pbinom(qbinom(1 - p2, n, p), n, p)
                
                return(min(a1, a2))
              }
              
              CI.lower <- 0
              CI.upper <- 1
              
              if (x != 0) {
                CI.lower <- qbeta((1 - conf.level)/2, x, n - x + 1)
                while (acceptbin(x, n, CI.lower + tol) < (1 - conf.level)) 
                  CI.lower = CI.lower + tol
              }
              
              if (x != n) {
                CI.upper <- qbeta(1 - (1 - conf.level)/2, x + 1, n - x)
                while (acceptbin(x, n, CI.upper - tol) < (1 - conf.level)) 
                  CI.upper <- CI.upper - tol
              }
              
            }
    )

    # dot not return ci bounds outside [0,1]
    ci <- c( est=est, lwr.ci=max(0, CI.lower), upr.ci=min(1, CI.upper) )

    if(sides=="left")
      ci[3] <- 1
    else if(sides=="right")
      ci[2] <- 0

    return(ci)

  }


  # handle vectors
  # which parameter has the highest dimension
  lst <- list(x=x, n=n, conf.level=conf.level, sides=sides, 
              method=method, rand=rand, std_est=std_est)
  maxdim <- max(unlist(lapply(lst, length)))
  # recycle all params to maxdim
  lgp <- lapply( lst, rep, length.out=maxdim )
  # # increase conf.level for one sided intervals
  # lgp$conf.level[lgp.sides!="two.sided"] <- 1 - 2*(1-lgp$conf.level[lgp.sides!="two.sided"])

  # get rownames
  lgn <- DescTools::Recycle(x=if(is.null(names(x))) paste("x", seq_along(x), sep=".") else names(x),
                 n=if(is.null(names(n))) paste("n", seq_along(n), sep=".") else names(n),
                 conf.level=conf.level, sides=sides, method=method, std_est=std_est)


  xn <- apply(as.data.frame(lgn[sapply(lgn, function(x) length(unique(x)) != 1)]), 1, paste, collapse=":")


  res <- t(sapply(1:maxdim, function(i) iBinomCI(x=lgp$x[i], n=lgp$n[i],
                                                 conf.level=lgp$conf.level[i],
                                                 sides=lgp$sides[i],
                                                 method=lgp$method[i], rand=lgp$rand[i], 
                                                 std_est=lgp$std_est[i])))
  colnames(res)[1] <- c("est")
  rownames(res) <- xn
  
  # if(nrow(res)==1)
  #   res <- res[1,]

  return(res)

}




BinomCIn <- function(p=0.5, width, interval=c(1, 1e5), conf.level=0.95, sides="two.sided", method="wilson") {
  uniroot(f = function(n) diff(BinomCI(x=p*n, n=n, conf.level=conf.level, 
                                       sides=sides, method=method)[-1]) - width, 
          interval = interval)$root
}





BinomDiffCI <- function(x1, n1, x2, n2, conf.level = 0.95, sides = c("two.sided","left","right"),
                        method=c("ac", "wald", "waldcc", "score", "scorecc", "mn",
                                 "mee", "blj", "ha", "hal", "jp")) {


  if(missing(sides))    sides <- match.arg(sides)
  if(missing(method))   method <- match.arg(method)
  

  iBinomDiffCI <- function(x1, n1, x2, n2, conf.level, sides, method) {
    
    #   .Wald #1
    #   .Wald (Corrected) #2
    #   .Exact
    #   .Exact (FM Score)
    #   .Newcombe Score #10
    #   .Newcombe Score (Corrected) #11
    #   .Farrington-Manning
    #   .Hauck-Anderson
    # http://www.jiangtanghu.com/blog/2012/09/23/statistical-notes-5-confidence-intervals-for-difference-between-independent-binomial-proportions-using-sas/
    #  Interval estimation for the difference between independent proportions: comparison of eleven methods.

    # https://www.lexjansen.com/wuss/2016/127_Final_Paper_PDF.pdf
    # http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.633.9380&rep=rep1&type=pdf
    
    # Newcombe (1998) (free):
    # http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.408.7354&rep=rep1&type=pdf
    
    
    # no need to check args here, they're already ok...
    # method <- match.arg(arg = method,
    #                     choices = c("wald", "waldcc", "ac", "score", "scorecc", "mn",
    #                                 "mee", "blj", "ha", "hal", "jp"))
    # 
    # sides <- match.arg(sides, choices = c("two.sided","left","right"), several.ok = FALSE)
    
    
    if(sides!="two.sided")
      conf.level <- 1 - 2*(1-conf.level)

    alpha <- 1 - conf.level
    kappa <- qnorm(1 - alpha/2)

    p1.hat <- x1/n1
    p2.hat <- x2/n2
    est <- p1.hat - p2.hat

    switch(method,
           "wald" = {
             vd <- p1.hat*(1-p1.hat)/n1 + p2.hat*(1-p2.hat)/n2
             term2 <- kappa * sqrt(vd)

             CI.lower <- max(-1, est - term2)
             CI.upper <- min(1, est + term2)
           },

           "waldcc" = {
             vd <- p1.hat*(1-p1.hat)/n1 + p2.hat*(1-p2.hat)/n2

             term2 <- kappa * sqrt(vd)
             term2 <- term2 + 0.5 * (1/n1+1/n2)

             CI.lower <- max(-1, est - term2)
             CI.upper <- min(1, est + term2)
           },
           "ac" = {   # Agresti-Caffo

             n1 <- n1+2
             n2 <- n2+2
             x1  <- x1+1
             x2  <- x2+1

             p1.hat <- x1/n1
             p2.hat <- x2/n2
             est1 <-  p1.hat - p2.hat

             vd <- p1.hat*(1-p1.hat)/n1 + p2.hat*(1-p2.hat)/n2

             term2 <- kappa * sqrt(vd)

             CI.lower <- max(-1, est1 - term2)
             CI.upper <- min(1, est1 + term2)
           } ,
           "exact" = {   # exact

             CI.lower <- NA
             CI.upper <- NA
           },
           "score" = {   # Newcombe

             w1 <- BinomCI(x=x1, n=n1, conf.level=conf.level, method="wilson")
             w2 <- BinomCI(x=x2, n=n2, conf.level=conf.level, method="wilson")
             l1 <- w1[2]
             u1 <- w1[3]
             l2 <- w2[2]
             u2 <- w2[3]

             CI.lower <- est - kappa * sqrt(l1*(1-l1)/n1 + u2*(1-u2)/n2)
             CI.upper <- est + kappa * sqrt(u1*(1-u1)/n1 + l2*(1-l2)/n2)
           },
           "scorecc" = {   # Newcombe

             w1 <- BinomCI(x=x1, n=n1, conf.level=conf.level, method="wilsoncc")
             w2 <- BinomCI(x=x2, n=n2, conf.level=conf.level, method="wilsoncc")
             l1 <- w1[2]
             u1 <- w1[3]
             l2 <- w2[2]
             u2 <- w2[3]

             CI.lower <- max(-1, est - sqrt((p1.hat - l1)^2 + (u2-p2.hat)^2) )
             CI.upper <- min( 1, est + sqrt((u1-p1.hat)^2 + (p2.hat-l2)^2) )

           },
           "mee" = {   # Mee, also called Farrington-Mannig

             .score <- function (p1, n1, p2, n2, dif) {

               if(dif > 1) dif <- 1
               if(dif < -1) dif <- -1
               
               diff <- p1 - p2 - dif
               
               if (abs(diff) == 0) {
                 res <- 0
                 
               } else {
                 t <- n2/n1
                 a <- 1 + t
                 b <- -(1 + t + p1 + t * p2 + dif * (t + 2))
                 c <- dif * dif + dif * (2 * p1 + t + 1) + p1 + t * p2
                 d <- -p1 * dif * (1 + dif)
                 v <- (b/a/3)^3 - b * c/(6 * a * a) + d/a/2
                 # v might be very small, resulting in a value v/u^3 > |1| 
                 # causing a numeric error for acos(v/u^3)
                 # see:  x1=10, n1=10, x2=0, n1=10
                 if(abs(v) < .Machine$double.eps) v <- 0
                 s <- sqrt((b/a/3)^2 - c/a/3)
                 u <- ifelse(v>0, 1,-1) * s
                 w <- (3.141592654 + acos(v/u^3))/3
                 p1d <- 2 * u * cos(w) - b/a/3
                 p2d <- p1d - dif
                 n <- n1 + n2
                 res <- (p1d * (1 - p1d)/n1 + p2d * (1 - p2d)/n2)
                 # res <- max(0, res)   # might result in a value slightly negative
                    
               }
               
               return(sqrt(res))
             }

             pval <- function(delta){
               z <- (est - delta)/.score(p1.hat, n1, p2.hat, n2, delta)
               2 * min(pnorm(z), 1-pnorm(z))
             }

             CI.lower <- max(-1, uniroot(
               function(delta) pval(delta) - alpha, 
               interval = c(-1+1e-6, est-1e-6)
             )$root)

             CI.upper <- min(1, uniroot(
               function(delta) pval(delta) - alpha, 
               interval = c(est + 1e-6, 1-1e-6)
             )$root)

           },

           "blj" = {  # brown-li-jeffrey
             p1.dash <- (x1 + 0.5) / (n1+1)
             p2.dash <- (x2 + 0.5) / (n2+1)
             vd <- p1.dash*(1-p1.dash)/n1 + p2.dash*(1-p2.dash)/n2
             term2 <- kappa * sqrt(vd)
             est.dash <- p1.dash - p2.dash

             CI.lower <- max(-1, est.dash  - term2)
             CI.upper <- min(1, est.dash + term2)

           },
           "ha" = {   # Hauck-Anderson

             term2 <- 1/(2*min(n1,n2)) + kappa * sqrt(p1.hat*(1-p1.hat)/(n1-1) +
                                                        p2.hat*(1-p2.hat)/(n2-1))

             CI.lower <- max(-1, est - term2)
             CI.upper <- min( 1, est + term2 )
           },
           "mn" = {  # Miettinen-Nurminen

             .conf <- function(x1, n1, x2, n2, z, lower=FALSE){

               p1 <- x1/n1
               p2 <- x2/n2
               p.hat <- p1 - p2
               dp <- 1 + ifelse(lower, 1, -1) * p.hat
               i <- 1

               while (i <= 50) {
                 dp <- 0.5 * dp
                 y <- p.hat + ifelse(lower, -1, 1) * dp
                 score <- .score(p1, n1, p2, n2, y)
                 if (score < z) {
                   p.hat <- y
                 }
                 if ((dp < 0.0000001) || (abs(z - score) < 0.000001))
                   break()
                 else
                   i <- i + 1
               }
               return(y)
             }

             .score <- function (p1, n1, p2, n2, dif) {

               diff <- p1 - p2 - dif
               if (abs(diff) == 0) {
                 res <- 0
               }
               else {
                 t <- n2/n1
                 a <- 1 + t
                 b <- -(1 + t + p1 + t * p2 + dif * (t + 2))
                 c <- dif * dif + dif * (2 * p1 + t + 1) + p1 + t * p2
                 d <- -p1 * dif * (1 + dif)
                 v <- (b/a/3)^3 - b * c/(6 * a * a) + d/a/2
                 s <- sqrt((b/a/3)^2 - c/a/3)
                 u <- ifelse(v>0, 1,-1) * s
                 w <- (3.141592654 + acos(v/u^3))/3
                 p1d <- 2 * u * cos(w) - b/a/3
                 p2d <- p1d - dif
                 n <- n1 + n2
                 var <- (p1d * (1 - p1d)/n1 + p2d * (1 - p2d)/n2) * n/(n - 1)
                 res <- diff^2/var
               }
               return(res)
             }

             z = qchisq(conf.level, 1)

             CI.lower <- max(-1, .conf(x1, n1, x2, n2, z, TRUE))
             CI.upper <- min(1, .conf(x1, n1, x2, n2, z, FALSE))

           },
           "beal" = {
             
             # experimental code only...
             # http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.633.9380&rep=rep1&type=pdf

             a <- p1.hat + p2.hat
             b <- p1.hat - p2.hat
             u <- ((1/n1) + (1/n2)) / 4
             v <- ((1/n1) - (1/n2)) / 4
             V <- u*((2-a)*a - b^2) + 2*v*(1-a)*b
             z <- qchisq(p=1-alpha/2, df = 1)
             A <- sqrt(z*(V + z*u^2*(2-a)*a + z*v^2*(1-a)^2))
             B <- (b + z*v*(1-a)) / (1+z*u)

             CI.lower <- max(-1, B - A / (1 + z*u))
             CI.upper <- min(1, B + A / (1 + z*u))

           },
           "hal" = {  # haldane 
             
             psi <- (p1.hat + p2.hat) / 2
             u <- (1/n1 + 1/n2) / 4
             v <- (1/n1 - 1/n2) / 4
             
             z <- kappa
             
             theta <- ((p1.hat - p2.hat) + z^2 * v* (1-2*psi)) / (1+z^2*u)
             w <- z / (1+z^2*u) * sqrt(u * (4*psi*(1-psi) - (p1.hat - p2.hat)^2) + 
                                         2*v*(1-2*psi) *(p1.hat - p2.hat) + 
                                         4*z^2*u^2*(1-psi)*psi + z^2*v^2*(1-2*psi)^2)
             c(theta + w, theta - w)
             CI.lower <- max(-1, theta - w)
             CI.upper <- min(1, theta + w)
             
           },
           "jp" = {   # jeffery perks
             
             # same as haldane but with other psi
             psi <- 0.5 * ((x1 + 0.5) / (n1 + 1) + (x2 + 0.5) / (n2 + 1) )
             
             u <- (1/n1 + 1/n2) / 4
             v <- (1/n1 - 1/n2) / 4
             
             z <- kappa
             
             theta <- ((p1.hat - p2.hat) + z^2 * v* (1-2*psi)) / (1+z^2*u)
             w <- z / (1+z^2*u) * sqrt(u * (4*psi*(1-psi) - (p1.hat - p2.hat)^2) + 
                                         2*v*(1-2*psi) *(p1.hat - p2.hat) + 
                                         4*z^2*u^2*(1-psi)*psi + z^2*v^2*(1-2*psi)^2)
             c(theta + w, theta - w)
             CI.lower <- max(-1, theta - w)
             CI.upper <- min(1, theta + w)
             
           },
           
    )

    ci <- c(est = est, lwr.ci = min(CI.lower, CI.upper), upr.ci = max(CI.lower, CI.upper))

    if(sides=="left")
      ci[3] <- 1
    else if(sides=="right")
      ci[2] <- -1

    return(ci)

  }

  
  method <- match.arg(arg=method, several.ok = TRUE)
  sides <- match.arg(arg=sides, several.ok = TRUE)
  
  # Recycle arguments
  lst <- Recycle(x1=x1, n1=n1, x2=x2, n2=n2, conf.level=conf.level, sides=sides, method=method)

  res <- t(sapply(1:attr(lst, "maxdim"),
                  function(i) iBinomDiffCI(x1=lst$x1[i], n1=lst$n1[i], x2=lst$x2[i], n2=lst$n2[i],
                                           conf.level=lst$conf.level[i],
                                           sides=lst$sides[i],
                                           method=lst$method[i])))

  # get rownames
  lgn <- Recycle(x1=if(is.null(names(x1))) paste("x1", seq_along(x1), sep=".") else names(x1),
                 n1=if(is.null(names(n1))) paste("n1", seq_along(n1), sep=".") else names(n1),
                 x2=if(is.null(names(x2))) paste("x2", seq_along(x2), sep=".") else names(x2),
                 n2=if(is.null(names(n2))) paste("n2", seq_along(n2), sep=".") else names(n2),
                 conf.level=conf.level, sides=sides, method=method)
  xn <- apply(as.data.frame(lgn[sapply(lgn, function(x) length(unique(x)) != 1)]), 1, paste, collapse=":")

  rownames(res) <- xn
  return(res)

}


BinomRatioCI_old <- function(x1, n1, x2, n2, conf.level = 0.95, method = "katz.log", bonf = FALSE,
                         tol = .Machine$double.eps^0.25, R = 1000, r = length(x1)) {
  
  # source: asbio::ci.prat by Ken Aho <kenaho1 at gmail.com>
  
  conf <- conf.level
  
  x <- x1; m <- n1; y <- x2; n <- n2
  
  indices <- c("adj.log","bailey","boot","katz.log","koopman","noether","sinh-1")
  method <- match.arg(method, indices)
  
  
  if(any(c(length(m),length(y),length(n))!= length(x))) stop("x1, n1, x2, and n2 vectors must have equal length")
  
  alpha <- 1 - conf
  oconf <- conf
  conf <- ifelse(bonf == FALSE, conf, 1 - alpha/r)
  z.star <- qnorm(1 - (1 - conf)/2)
  x2 <- qchisq(conf, 1)
  
  ci.prat1 <- function(x, m, y, n, conf = 0.95, method = "katz.log", bonf = FALSE){
    if((x > m)|(y > n)) stop("Use correct parameterization for x1, x2, n1, and n2")
    
    #-------------------------- Adj-log ------------------------------#
    
    if(method == "adj.log"){
      if((x == m & y == n)){
        rat <- (x/m)/(y/n); x <- m - 0.5; y <- n - 0.5; nrat <- ((x+0.5)/(m+0.5))/((y+0.5)/(n+0.5)); varhat <- (1/(x+0.5)) - (1/(m+0.5)) + (1/(y+0.5)) - (1/(n+0.5))
        CIL <- nrat * exp(-1 * z.star * sqrt(varhat))
        CIU <- nrat * exp(z.star * sqrt(varhat))
      } else if(x == 0 & y == 0){CIL = 0; CIU = Inf; rat = 0; varhat <- (1/(x+0.5)) - (1/(m+0.5)) + (1/(y+0.5)) - (1/(n+0.5))
      }else{
        rat <- (x/m)/(y/n); nrat <- ((x+0.5)/(m+0.5))/((y+0.5)/(n+0.5)); varhat <- (1/(x+0.5)) - (1/(m+0.5)) + (1/(y+0.5)) - (1/(n+0.5))
        CIL <- nrat * exp(-1 * z.star * sqrt(varhat))
        CIU <- nrat * exp(z.star * sqrt(varhat))}
      CI <- c(rat, CIL, CIU)
    }
    
    #-------------------------------Bailey-----------------------------#
    
    if(method == "bailey"){
      rat <- (x/m)/(y/n)
      varhat <- ifelse((x == m) & (y == n),(1/(m-0.5)) - (1/(m)) + (1/(n-0.5)) - (1/(n)),(1/(x)) - (1/(m)) + (1/(y)) - (1/(n)))
      
      p.hat1 <- x/m; p.hat2 <- y/n;
      q.hat1 <- 1 - p.hat1; q.hat2 <- 1 - p.hat2
      
      if(x == 0 | y == 0){
        xn <- ifelse(x == 0, 0.5, x)
        yn <- ifelse(y == 0, 0.5, y)
        nrat <- (xn/m)/(yn/n)
        p.hat1 <- xn/m; p.hat2 <- yn/n;
        q.hat1 <- 1 - p.hat1; q.hat2 <- 1 - p.hat2
        if(xn == m | yn == n){
          xn <- ifelse(xn == m, m - 0.5, xn)
          yn <- ifelse(yn == n, n - 0.5, yn)
          nrat <- (xn/m)/(yn/n)
          p.hat1 <- xn/m; p.hat2 <- yn/n;
          q.hat1 <- 1 - p.hat1; q.hat2 <- 1 - p.hat2
        }
      }
      
      if(x == 0 | y == 0){
        if(x == 0 & y == 0){
          rat <- Inf
          CIL <- 0
          CIU <- Inf
        }
        if(x == 0 & y != 0){
          CIL <- 0
          CIU <- nrat * ((1+ z.star * sqrt((q.hat1/xn) + (q.hat2/yn) - (z.star^2 * q.hat1 * q.hat2)/(9 * xn * yn))/3)/((1 - (z.star^2 * q.hat2)/(9 * yn))))^3
        }
        if(y == 0 & x != 0){
          CIU = Inf
          CIL <- nrat * ((1- z.star * sqrt((q.hat1/xn) + (q.hat2/yn) - (z.star^2 * q.hat1 * q.hat2)/(9 * xn * yn))/3)/((1 - (z.star^2 * q.hat2)/(9 * yn))))^3
        }
      }else if(x == m | y == n){
        xn <- ifelse(x == m, m - 0.5, x)
        yn <- ifelse(y == n, n - 0.5, y)
        nrat <- (xn/m)/(yn/n)
        p.hat1 <- xn/m; p.hat2 <- yn/n;
        q.hat1 <- 1 - p.hat1; q.hat2 <- 1 - p.hat2
        CIL <- nrat * ((1- z.star * sqrt((q.hat1/xn) + (q.hat2/yn) - (z.star^2 * q.hat1 * q.hat2)/(9 * xn * yn))/3)/((1 - (z.star^2 * q.hat2)/(9 * yn))))^3
        CIU <- nrat * ((1+ z.star * sqrt((q.hat1/xn) + (q.hat2/yn) - (z.star^2 * q.hat1 * q.hat2)/(9 * xn * yn))/3)/((1 - (z.star^2 * q.hat2)/(9 * yn))))^3
      }else{
        CIL <- rat * ((1- z.star * sqrt((q.hat1/x) + (q.hat2/y) - (z.star^2 * q.hat1 * q.hat2)/(9 * x * y))/3)/((1 - (z.star^2 * q.hat2)/(9 * y))))^3
        CIU <- rat * ((1+ z.star * sqrt((q.hat1/x) + (q.hat2/y) - (z.star^2 * q.hat1 * q.hat2)/(9 * x * y))/3)/((1 - (z.star^2 * q.hat2)/(9 * y))))^3
      }
      CI <- c(rat, CIL, CIU)
    }
    
    #-------------------------- Boot ------------------------------#
    
    if(method == "boot"){
      rat <- (x/m)/(y/n)
      if((x == 0 & y == 0)|(x == 0 & y != 0)|(x != 0 & y == 0)){
        if(x == 0 & y == 0) {CIL <- 0;  CIU <- Inf; rat = 0; varhat = NA}
        if(x == 0 & y != 0) {CIL <- 0;  rat <- (x/m)/(y/n); x <- 0.5; nrat <- (x/m)/(y/n)
        varhat <- (1/x) - (1/m) + (1/y) - (1/n)
        CIU <- nrat * exp(z.star * sqrt(varhat))}
        if(x != 0 & y == 0) {CIU <- Inf;  rat <- (x/m)/(y/n); y <- 0.5; nrat <- (x/m)/(y/n)
        varhat <- (1/x) - (1/m) + (1/y) - (1/n)
        CIL <- nrat * exp(-1 * z.star * sqrt(varhat))}
      } else{
        num.data <- c(rep(1, x), rep(0, m - x))
        den.data <- c(rep(1, y), rep(0, n - y))
        nd <- matrix(ncol = R, nrow = m)
        dd <- matrix(ncol = R, nrow = n)
        brat <- 1:R
        for(i in 1L:R){
          nd[,i] <- sample(num.data, m, replace = TRUE)
          dd[,i] <- sample(den.data, n, replace = TRUE)
          brat[i] <- (sum(nd[,i])/m)/(sum(dd[,i])/n)
        }
        alpha <- 1 - conf
        CIU <- quantile(brat, 1 - alpha/2, na.rm = TRUE)
        CIL <- quantile(brat, alpha/2, na.rm = TRUE)
        varhat <- var(brat)
      }
      CI <- c(rat, CIL, CIU)
    }
    
    #-------------------------- Katz-log ------------------------------#
    
    if(method == "katz.log"){
      if((x == 0 & y == 0)|(x == 0 & y != 0)|(x != 0 & y == 0)|(x == m & y == n)){
        if(x == 0 & y == 0) {CIL <- 0;  CIU <- Inf; rat = 0; varhat = NA}
        if(x == 0 & y != 0) {CIL <- 0;  rat <- (x/m)/(y/n); x <- 0.5; nrat <- (x/m)/(y/n)
        varhat <- (1/x) - (1/m) + (1/y) - (1/n)
        CIU <- nrat * exp(z.star * sqrt(varhat))}
        if(x != 0 & y == 0) {CIU <- Inf;  rat <- (x/m)/(y/n); y <- 0.5; nrat <- (x/m)/(y/n)
        varhat <- (1/x) - (1/m) + (1/y) - (1/n)
        CIL <- nrat * exp(-1 * z.star * sqrt(varhat))}
        if(x == m & y == n) {
          rat <- (x/m)/(y/n); x <- m - 0.5; y <- n - 0.5; nrat <- (x/m)/(y/n); varhat <- (1/x) - (1/m) + (1/y) - (1/n); CIL <- nrat * exp(-1 * z.star * sqrt(varhat))
          x <- m - 0.5; y <- n - 0.5; nrat <- (x/m)/(y/n); varhat <- (1/x) - (1/m) + (1/y) - (1/n); CIU <- nrat * exp(z.star * sqrt(varhat))
        }
      } else
      {rat <- (x/m)/(y/n); varhat <- (1/x) - (1/m) + (1/y) - (1/n)
      CIL <- rat * exp(-1 * z.star * sqrt(varhat))
      CIU <- rat * exp(z.star * sqrt(varhat))}
      CI <- c(rat, CIL, CIU)
    }
    
    #-------------------------- Koopman ------------------------------#
    
    if(method == "koopman"){
      
      if(x == 0 & y == 0) {CIL <- 0;  CIU <- Inf; rat = 0; varhat = NA
      } else {
        
        a1 = n * (n * (n + m) * x + m * (n + x) * (z.star^2))
        a2 = -n * (n * m * (y + x) + 2 * (n + m) * y *
                     x + m * (n + y + 2 * x) * (z.star^2))
        a3 = 2 * n * m * y * (y + x) + (n + m) * (y^2) *
          x + n * m * (y + x) * (z.star^2)
        a4 = -m * (y^2) * (y + x)
        b1 = a2/a1; b2 = a3/a1; b3 = a4/a1
        c1 = b2 - (b1^2)/3;  c2 = b3 - b1 * b2/3 + 2 * (b1^3)/27
        ceta = suppressWarnings(acos(sqrt(27) * c2/(2 * c1 * sqrt(-c1))))
        t1 <- suppressWarnings(-2 * sqrt(-c1/3) * cos(pi/3 - ceta/3))
        t2 <- suppressWarnings(-2 * sqrt(-c1/3) * cos(pi/3 + ceta/3))
        t3 <- suppressWarnings(2 * sqrt(-c1/3) * cos(ceta/3))
        p01 = t1 - b1/3; p02 = t2 - b1/3; p03 = t3 - b1/3
        p0sum = p01 + p02 + p03; p0up = min(p01, p02, p03); p0low = p0sum - p0up - max(p01, p02, p03)
        
        
        U <- function(a){
          p.hatf <- function(a){
            (a * (m + y) + x + n - ((a * (m + y) + x + n)^2 - 4 * a * (m + n) * (x + y))^0.5)/(2 * (m + n))
          }
          p.hat <- p.hatf(a)
          (((x - m * p.hat)^2)/(m * p.hat * (1 - p.hat)))*(1 + (m * (a - p.hat))/(n * (1 - p.hat))) - x2
        }
        
        rat <- (x/m)/(y/n); nrat <- (x/m)/(y/n); varhat <- (1/x) - (1/m) + (1/y) - (1/n)
        if((x == 0) & (y != 0)) {nrat <- ((x + 0.5)/m)/(y/n); varhat <- (1/(x + 0.5)) - (1/m) + (1/y) - (1/n)}
        if((y == 0) & (x != 0)) {nrat <- (x/m)/((y + 0.5)/n); varhat <- (1/x) - (1/m) + (1/(y + 0.5)) - (1/n)}
        if((y == n) & (x == m)) {nrat <- 1; varhat <- (1/(m - 0.5)) - (1/m) + 1/(n - 0.5) - (1/n)}
        
        La <- nrat * exp(-1 * z.star * sqrt(varhat)) * 1/4
        Lb <- nrat
        Ha <- nrat
        Hb <- nrat * exp(z.star * sqrt(varhat)) * 4
        
        #----------------------------------------------------------------------------#
        
        if((x != 0) & (y == 0)) {
          if(x == m){
            CIL = (1 - (m - x) * (1 - p0low)/(y + m - (n + m) * p0low))/p0low
            CIU <- Inf
          }
          else{
            CIL <- uniroot(U, c(La, Lb), tol=tol)$root
            CIU <- Inf
          }
        }
        
        #------------------------------------------------------------#
        
        if((x == 0) & (y != n)) {
          CIU <- uniroot(U, c(Ha, Hb), tol=tol)$root
          CIL <- 0
        }
        
        #------------------------------------------------------------#
        
        if(((x == m)|(y == n)) & (y != 0)){
          
          
          if((x == m)&(y == n)){
            U.0 <- function(a){if(a <= 1) {m * (1 - a)/a - x2}
              else{(n * (a - 1)) - x2}
            }
            CIL <- uniroot(U.0, c(La, rat), tol = tol)$root
            CIU <- uniroot(U.0, c(rat, Hb), tol = tol)$root
          }
          
          #------------------------------------------------------------#
          
          if((x == m) & (y != n)){
            
            phat1 = x/m; phat2 = y/n
            phihat = phat2/phat1
            phiu = 1.1 * phihat
            r = 0
            while (r >= -z.star) {
              a = (m + n) * phiu
              b = -((x + n) * phiu + y + m)
              c = x + y
              p1hat = (-b - sqrt(b^2 - 4 * a * c))/(2 * a)
              p2hat = p1hat * phiu
              q2hat = 1 - p2hat
              var = (m * n * p2hat)/(n * (phiu - p2hat) +
                                       m * q2hat)
              r = ((y - n * p2hat)/q2hat)/sqrt(var)
              phiu1 = phiu
              phiu = 1.0001 * phiu1
            }
            CIU = (1 - (m - x) * (1 - p0up)/(y + m - (n + m) * p0up))/p0up
            CIL = 1/phiu1
          }
          
          #------------------------------------------------------------#
          
          if((y == n) & (x != m)){
            p.hat2 = y/n; p.hat1 = x/m; phihat = p.hat1/p.hat2
            phil = 0.95 * phihat; r = 0
            if(x != 0){
              while(r <= z.star) {
                a = (n + m) * phil
                b = -((y + m) * phil + x + n)
                c = y + x
                p1hat = (-b - sqrt(b^2 - 4 * a * c))/(2 * a)
                p2hat = p1hat * phil
                q2hat = 1 - p2hat
                var = (n * m * p2hat)/(m * (phil - p2hat) +
                                         n * q2hat)
                r = ((x - m * p2hat)/q2hat)/sqrt(var)
                CIL = phil
                phil = CIL/1.0001
              }
            }
            
            phiu = 1.1 * phihat
            
            if(x == 0){CIL = 0; phiu <- ifelse(n < 100, 0.01, 0.001)}
            
            r = 0
            while(r >= -z.star) {
              a = (n + m) * phiu
              b = -((y + m) * phiu + x  + n)
              c = y + x
              p1hat = (-b - sqrt(b^2 - 4 * a * c))/(2 * a)
              p2hat = p1hat * phiu
              q2hat = 1 - p2hat
              var = (n * m * p2hat)/(m * (phiu - p2hat) +
                                       n * q2hat)
              r = ((x  - m * p2hat)/q2hat)/sqrt(var)
              phiu1 = phiu
              phiu = 1.0001 * phiu1
            }
            CIU <- phiu1
          }
        } else if((y != n) & (x != m) & (x != 0) & (y != 0)){
          CIL <- uniroot(U, c(La, Lb), tol=tol)$root
          CIU <- uniroot(U, c(Ha, Hb), tol=tol)$root
        }
      }
      CI <- c(rat, CIL, CIU)
    }
    
    #-------------------------- Noether ------------------------------#
    
    if(method == "noether"){
      if((x == 0 & y == 0)|(x == 0 & y != 0)|(x != 0 & y == 0)|(x == m & y == n)){
        if(x == 0 & y == 0) {CIL <- 0;  CIU <- Inf; rat = 0; se.hat <- NA; varhat = NA}
        if(x == 0 & y != 0) {rat <- (x/m)/(y/n); CIL <- 0;  x <- 0.5
        nrat <- (x/m)/(y/n); se.hat <- nrat * sqrt((1/x) - (1/m) + (1/y) - (1/n))
        CIU <- nrat + z.star * se.hat}
        if(x != 0 & y == 0) {rat <- Inf; CIU <- Inf;  y <- 0.5
        nrat <- (x/m)/(y/n); se.hat <- nrat * sqrt((1/x) - (1/m) + (1/y) - (1/n))
        CIL <- nrat - z.star * se.hat}
        if(x == m & y == n) {
          rat <- (x/m)/(y/n); x <- m - 0.5; y <- n - 0.5; nrat <- (x/m)/(y/n); se.hat <- nrat * sqrt((1/x) - (1/m) + (1/y) - (1/n))
          CIU <- nrat + z.star * se.hat
          CIL <- nrat - z.star * se.hat
        }
      } else
      {
        rat <- (x/m)/(y/n)
        se.hat <- rat * sqrt((1/x) - (1/m) + (1/y) - (1/n))
        CIL <- rat - z.star * se.hat
        CIU <- rat + z.star * se.hat
      }
      varhat <- ifelse(is.na(se.hat), NA, se.hat^2)
      CI <- c(rat, max(0,CIL), CIU)
    }
    
    #------------------------- sinh-1 -----------------------------#
    
    if(method == "sinh-1"){
      
      if((x == 0 & y == 0)|(x == 0 & y != 0)|(x != 0 & y == 0)|(x == m & y == n)){
        if(x == 0 & y == 0) {CIL <- 0;  CIU <- Inf; rat = 0; varhat = NA}
        if(x == 0 & y != 0) {rat <- (x/m)/(y/n); CIL <- 0;  x <- z.star
        nrat <- (x/m)/(y/n); varhat <- 2 * asinh((z.star/2)*sqrt(1/x + 1/y - 1/m - 1/n))
        CIU <- exp(log(nrat) + varhat)}
        if(x != 0 & y == 0) {rat = Inf; CIU <- Inf;  y <- z.star
        nrat <- (x/m)/(y/n); varhat <- 2 * asinh((z.star/2)*sqrt(1/x + 1/y - 1/m - 1/n))
        CIL <- exp(log(nrat) - varhat)}
        if(x == m & y == n) {
          rat <- (x/m)/(y/n); x <- m - 0.5; y <- n - 0.5; nrat <- (x/m)/(y/n); varhat <- 2 * asinh((z.star/2)*sqrt(1/x + 1/y - 1/m - 1/n))
          CIL <- exp(log(nrat) - varhat)
          CIU <- exp(log(nrat) + varhat)
        }
      } else
      {rat <- (x/m)/(y/n); varhat <- 2 * asinh((z.star/2)*sqrt(1/x + 1/y - 1/m - 1/n))
      CIL <- exp(log(rat) - varhat)
      CIU <- exp(log(rat) + varhat)
      }
      CI <- c(rat, CIL, CIU)
    }
    
    #------------------------Results ------------------------------#
    
    res <- list(CI = CI, varhat = varhat)
    res
  }
  
  CI <- matrix(ncol = 3, nrow = length(x1))
  vh <- rep(NA, length(x1))
  
  for(i in 1L : length(x1)){
    temp <- ci.prat1(x = x[i], m = m[i], y = y[i], n = n[i], conf = conf, method = method, bonf = bonf)
    CI[i,] <- temp$CI
    vh[i] <- temp$varhat
  }
  
  CI <- data.frame(CI)
  if(length(x1) == 1) row.names(CI) <- ""
  head <- paste(paste(as.character(oconf * 100),"%",sep=""), c("Confidence interval for ratio of binomial proportions"))
  if(method == "adj.log")head <- paste(head,"(method=adj-log)")
  if(method == "bailey")head <- paste(head,"(method=Bailey)")
  if(method == "boot")head <- paste(head,"(method=percentile bootstrap)")
  if(method == "katz.log")head <- paste(head,"(method=Katz-log)")
  if(method == "koopman")head <- paste(head,"(method=Koopman)")
  if(method == "noether")head <- paste(head,"(method=Noether)")
  if(method == "sinh")head <- paste(head,"(method=sinh^-1)")
  
  if(bonf == TRUE)head <- paste(head, "\n Bonferroni simultaneous intervals, r = ", bquote(.(r)),
                                "\n Marginal confidence = ", bquote(.(conf)), "\n", sep = "")
  
  ends <- c("Estimate", paste(as.character(c((1-oconf)/2, 1-((1-oconf)/2))*100), "%", sep=""))
  # res <- list(varhat = vh, ci = CI, ends = ends, head = head)
  # class(res) <- "ci"
  res <- data.matrix(CI)
  dimnames(res) <- list(NULL, c("est","lwr.ci","upr.ci"))
  
  res
}




BinomRatioCI <- function(x1, n1, x2, n2, conf.level = 0.95, sides = c("two.sided","left","right"),
                          method =c("katz.log","adj.log","bailey","koopman","noether","sinh-1","boot"),
                          tol = .Machine$double.eps^0.25, R = 1000) {
  
  # source: asbio::ci.prat by Ken Aho <kenaho1 at gmail.com>
  

  iBinomRatioCI <- function(x, m, y, n, conf, sides, method) {
    
    if((x > m)|(y > n)) stop("Use correct parameterization for x1, x2, n1, and n2")

    method <- match.arg(method, c("katz.log","adj.log","bailey","koopman","noether","sinh-1","boot"))
    
    if(sides!="two.sided")
      conf <- 1 - 2*(1-conf)
    
    alpha <- 1 - conf

    z.star <- qnorm(1 - (1 - conf)/2)
    x2 <- qchisq(conf, 1)
    
    #-------------------------- Adj-log ------------------------------#
    
    if(method == "adj.log"){
      if((x == m & y == n)){
        rat <- (x/m)/(y/n) 
        x <- m - 0.5
        y <- n - 0.5
        nrat <- ((x+0.5)/(m+0.5))/((y+0.5)/(n+0.5))
        varhat <- (1/(x+0.5)) - (1/(m+0.5)) + (1/(y+0.5)) - (1/(n+0.5))
        
        CIL <- nrat * exp(-1 * z.star * sqrt(varhat))
        CIU <- nrat * exp(z.star * sqrt(varhat))
        
      } else if(x == 0 & y == 0){
        
        CIL = 0 
        CIU = Inf 
        rat = 0 
        varhat <- (1/(x+0.5)) - (1/(m+0.5)) + (1/(y+0.5)) - (1/(n+0.5))
        
      } else {
        
        rat <- (x/m)/(y/n) 
        nrat <- ((x+0.5)/(m+0.5))/((y+0.5)/(n+0.5))
        varhat <- (1/(x+0.5)) - (1/(m+0.5)) + (1/(y+0.5)) - (1/(n+0.5))
        CIL <- nrat * exp(-1 * z.star * sqrt(varhat))
        CIU <- nrat * exp(z.star * sqrt(varhat))
      }
      
      CI <- c(rat, CIL, CIU)
      
    }
    
    #-------------------------------Bailey-----------------------------#
    
    if(method == "bailey"){
      rat <- (x/m)/(y/n)
      varhat <- ifelse((x == m) & (y == n),(1/(m-0.5)) - (1/(m)) + (1/(n-0.5)) - (1/(n)),(1/(x)) - (1/(m)) + (1/(y)) - (1/(n)))
      
      p.hat1 <- x/m; p.hat2 <- y/n;
      q.hat1 <- 1 - p.hat1; q.hat2 <- 1 - p.hat2
      
      if(x == 0 | y == 0){
        xn <- ifelse(x == 0, 0.5, x)
        yn <- ifelse(y == 0, 0.5, y)
        nrat <- (xn/m)/(yn/n)
        p.hat1 <- xn/m; p.hat2 <- yn/n;
        q.hat1 <- 1 - p.hat1; q.hat2 <- 1 - p.hat2
        if(xn == m | yn == n){
          xn <- ifelse(xn == m, m - 0.5, xn)
          yn <- ifelse(yn == n, n - 0.5, yn)
          nrat <- (xn/m)/(yn/n)
          p.hat1 <- xn/m; p.hat2 <- yn/n;
          q.hat1 <- 1 - p.hat1; q.hat2 <- 1 - p.hat2
        }
      }
      
      if(x == 0 | y == 0){
        if(x == 0 & y == 0){
          rat <- Inf
          CIL <- 0
          CIU <- Inf
        }
        if(x == 0 & y != 0){
          CIL <- 0
          CIU <- nrat * ((1+ z.star * sqrt((q.hat1/xn) + (q.hat2/yn) - (z.star^2 * q.hat1 * q.hat2)/(9 * xn * yn))/3)/((1 - (z.star^2 * q.hat2)/(9 * yn))))^3
        }
        if(y == 0 & x != 0){
          CIU = Inf
          CIL <- nrat * ((1- z.star * sqrt((q.hat1/xn) + (q.hat2/yn) - (z.star^2 * q.hat1 * q.hat2)/(9 * xn * yn))/3)/((1 - (z.star^2 * q.hat2)/(9 * yn))))^3
        }
      }else if(x == m | y == n){
        xn <- ifelse(x == m, m - 0.5, x)
        yn <- ifelse(y == n, n - 0.5, y)
        nrat <- (xn/m)/(yn/n)
        p.hat1 <- xn/m; p.hat2 <- yn/n;
        q.hat1 <- 1 - p.hat1; q.hat2 <- 1 - p.hat2
        CIL <- nrat * ((1- z.star * sqrt((q.hat1/xn) + (q.hat2/yn) - (z.star^2 * q.hat1 * q.hat2)/(9 * xn * yn))/3)/((1 - (z.star^2 * q.hat2)/(9 * yn))))^3
        CIU <- nrat * ((1+ z.star * sqrt((q.hat1/xn) + (q.hat2/yn) - (z.star^2 * q.hat1 * q.hat2)/(9 * xn * yn))/3)/((1 - (z.star^2 * q.hat2)/(9 * yn))))^3
      }else{
        CIL <- rat * ((1- z.star * sqrt((q.hat1/x) + (q.hat2/y) - (z.star^2 * q.hat1 * q.hat2)/(9 * x * y))/3)/((1 - (z.star^2 * q.hat2)/(9 * y))))^3
        CIU <- rat * ((1+ z.star * sqrt((q.hat1/x) + (q.hat2/y) - (z.star^2 * q.hat1 * q.hat2)/(9 * x * y))/3)/((1 - (z.star^2 * q.hat2)/(9 * y))))^3
      }
      CI <- c(rat, CIL, CIU)
    }
    
    #-------------------------- Boot ------------------------------#
    
    if(method == "boot"){
      rat <- (x/m)/(y/n)
      if((x == 0 & y == 0)|(x == 0 & y != 0)|(x != 0 & y == 0)){
        if(x == 0 & y == 0) {CIL <- 0;  CIU <- Inf; rat = 0; varhat = NA}
        if(x == 0 & y != 0) {CIL <- 0;  rat <- (x/m)/(y/n); x <- 0.5; nrat <- (x/m)/(y/n)
        varhat <- (1/x) - (1/m) + (1/y) - (1/n)
        CIU <- nrat * exp(z.star * sqrt(varhat))}
        if(x != 0 & y == 0) {CIU <- Inf;  rat <- (x/m)/(y/n); y <- 0.5; nrat <- (x/m)/(y/n)
        varhat <- (1/x) - (1/m) + (1/y) - (1/n)
        CIL <- nrat * exp(-1 * z.star * sqrt(varhat))}
      } else{
        num.data <- c(rep(1, x), rep(0, m - x))
        den.data <- c(rep(1, y), rep(0, n - y))
        nd <- matrix(ncol = R, nrow = m)
        dd <- matrix(ncol = R, nrow = n)
        brat <- 1:R
        for(i in 1L:R){
          nd[,i] <- sample(num.data, m, replace = TRUE)
          dd[,i] <- sample(den.data, n, replace = TRUE)
          brat[i] <- (sum(nd[,i])/m)/(sum(dd[,i])/n)
        }
        alpha <- 1 - conf
        CIU <- quantile(brat, 1 - alpha/2, na.rm = TRUE)
        CIL <- quantile(brat, alpha/2, na.rm = TRUE)
        varhat <- var(brat)
      }
      CI <- c(rat, CIL, CIU)
    }
    
    #-------------------------- Katz-log ------------------------------#
    
    if(method == "katz.log"){
      if((x == 0 & y == 0)|(x == 0 & y != 0)|(x != 0 & y == 0)|(x == m & y == n)){
        if(x == 0 & y == 0) {CIL <- 0;  CIU <- Inf; rat = 0; varhat = NA}
        if(x == 0 & y != 0) {CIL <- 0;  rat <- (x/m)/(y/n); x <- 0.5; nrat <- (x/m)/(y/n)
        varhat <- (1/x) - (1/m) + (1/y) - (1/n)
        CIU <- nrat * exp(z.star * sqrt(varhat))}
        if(x != 0 & y == 0) {CIU <- Inf;  rat <- (x/m)/(y/n); y <- 0.5; nrat <- (x/m)/(y/n)
        varhat <- (1/x) - (1/m) + (1/y) - (1/n)
        CIL <- nrat * exp(-1 * z.star * sqrt(varhat))}
        if(x == m & y == n) {
          rat <- (x/m)/(y/n); x <- m - 0.5; y <- n - 0.5; nrat <- (x/m)/(y/n); varhat <- (1/x) - (1/m) + (1/y) - (1/n); CIL <- nrat * exp(-1 * z.star * sqrt(varhat))
          x <- m - 0.5; y <- n - 0.5; nrat <- (x/m)/(y/n); varhat <- (1/x) - (1/m) + (1/y) - (1/n); CIU <- nrat * exp(z.star * sqrt(varhat))
        }
      } else
      {rat <- (x/m)/(y/n); varhat <- (1/x) - (1/m) + (1/y) - (1/n)
      CIL <- rat * exp(-1 * z.star * sqrt(varhat))
      CIU <- rat * exp(z.star * sqrt(varhat))}
      CI <- c(rat, CIL, CIU)
    }
    
    #-------------------------- Koopman ------------------------------#
    
    if(method == "koopman"){
      
      if(x == 0 & y == 0) {CIL <- 0;  CIU <- Inf; rat = 0; varhat = NA
      } else {
        
        a1 = n * (n * (n + m) * x + m * (n + x) * (z.star^2))
        a2 = -n * (n * m * (y + x) + 2 * (n + m) * y *
                     x + m * (n + y + 2 * x) * (z.star^2))
        a3 = 2 * n * m * y * (y + x) + (n + m) * (y^2) *
          x + n * m * (y + x) * (z.star^2)
        a4 = -m * (y^2) * (y + x)
        b1 = a2/a1; b2 = a3/a1; b3 = a4/a1
        c1 = b2 - (b1^2)/3;  c2 = b3 - b1 * b2/3 + 2 * (b1^3)/27
        ceta = suppressWarnings(acos(sqrt(27) * c2/(2 * c1 * sqrt(-c1))))
        t1 <- suppressWarnings(-2 * sqrt(-c1/3) * cos(pi/3 - ceta/3))
        t2 <- suppressWarnings(-2 * sqrt(-c1/3) * cos(pi/3 + ceta/3))
        t3 <- suppressWarnings(2 * sqrt(-c1/3) * cos(ceta/3))
        p01 = t1 - b1/3; p02 = t2 - b1/3; p03 = t3 - b1/3
        p0sum = p01 + p02 + p03; p0up = min(p01, p02, p03); p0low = p0sum - p0up - max(p01, p02, p03)
        
        
        U <- function(a){
          p.hatf <- function(a){
            (a * (m + y) + x + n - ((a * (m + y) + x + n)^2 - 4 * a * (m + n) * (x + y))^0.5)/(2 * (m + n))
          }
          p.hat <- p.hatf(a)
          (((x - m * p.hat)^2)/(m * p.hat * (1 - p.hat)))*(1 + (m * (a - p.hat))/(n * (1 - p.hat))) - x2
        }
        
        rat <- (x/m)/(y/n); nrat <- (x/m)/(y/n); varhat <- (1/x) - (1/m) + (1/y) - (1/n)
        if((x == 0) & (y != 0)) {nrat <- ((x + 0.5)/m)/(y/n); varhat <- (1/(x + 0.5)) - (1/m) + (1/y) - (1/n)}
        if((y == 0) & (x != 0)) {nrat <- (x/m)/((y + 0.5)/n); varhat <- (1/x) - (1/m) + (1/(y + 0.5)) - (1/n)}
        if((y == n) & (x == m)) {nrat <- 1; varhat <- (1/(m - 0.5)) - (1/m) + 1/(n - 0.5) - (1/n)}
        
        La <- nrat * exp(-1 * z.star * sqrt(varhat)) * 1/4
        Lb <- nrat
        Ha <- nrat
        Hb <- nrat * exp(z.star * sqrt(varhat)) * 4
        
        #----------------------------------------------------------------------------#
        
        if((x != 0) & (y == 0)) {
          if(x == m){
            CIL = (1 - (m - x) * (1 - p0low)/(y + m - (n + m) * p0low))/p0low
            CIU <- Inf
          }
          else{
            CIL <- uniroot(U, c(La, Lb), tol=tol)$root
            CIU <- Inf
          }
        }
        
        #------------------------------------------------------------#
        
        if((x == 0) & (y != n)) {
          CIU <- uniroot(U, c(Ha, Hb), tol=tol)$root
          CIL <- 0
        }
        
        #------------------------------------------------------------#
        
        if(((x == m)|(y == n)) & (y != 0)){
          
          
          if((x == m)&(y == n)){
            U.0 <- function(a){if(a <= 1) {m * (1 - a)/a - x2}
              else{(n * (a - 1)) - x2}
            }
            CIL <- uniroot(U.0, c(La, rat), tol = tol)$root
            CIU <- uniroot(U.0, c(rat, Hb), tol = tol)$root
          }
          
          #------------------------------------------------------------#
          
          if((x == m) & (y != n)){
            
            phat1 = x/m; phat2 = y/n
            phihat = phat2/phat1
            phiu = 1.1 * phihat
            r = 0
            while (r >= -z.star) {
              a = (m + n) * phiu
              b = -((x + n) * phiu + y + m)
              c = x + y
              p1hat = (-b - sqrt(b^2 - 4 * a * c))/(2 * a)
              p2hat = p1hat * phiu
              q2hat = 1 - p2hat
              var = (m * n * p2hat)/(n * (phiu - p2hat) +
                                       m * q2hat)
              r = ((y - n * p2hat)/q2hat)/sqrt(var)
              phiu1 = phiu
              phiu = 1.0001 * phiu1
            }
            CIU = (1 - (m - x) * (1 - p0up)/(y + m - (n + m) * p0up))/p0up
            CIL = 1/phiu1
          }
          
          #------------------------------------------------------------#
          
          if((y == n) & (x != m)){
            p.hat2 = y/n; p.hat1 = x/m; phihat = p.hat1/p.hat2
            phil = 0.95 * phihat; r = 0
            if(x != 0){
              while(r <= z.star) {
                a = (n + m) * phil
                b = -((y + m) * phil + x + n)
                c = y + x
                p1hat = (-b - sqrt(b^2 - 4 * a * c))/(2 * a)
                p2hat = p1hat * phil
                q2hat = 1 - p2hat
                var = (n * m * p2hat)/(m * (phil - p2hat) +
                                         n * q2hat)
                r = ((x - m * p2hat)/q2hat)/sqrt(var)
                CIL = phil
                phil = CIL/1.0001
              }
            }
            
            phiu = 1.1 * phihat
            
            if(x == 0){CIL = 0; phiu <- ifelse(n < 100, 0.01, 0.001)}
            
            r = 0
            while(r >= -z.star) {
              a = (n + m) * phiu
              b = -((y + m) * phiu + x  + n)
              c = y + x
              p1hat = (-b - sqrt(b^2 - 4 * a * c))/(2 * a)
              p2hat = p1hat * phiu
              q2hat = 1 - p2hat
              var = (n * m * p2hat)/(m * (phiu - p2hat) +
                                       n * q2hat)
              r = ((x  - m * p2hat)/q2hat)/sqrt(var)
              phiu1 = phiu
              phiu = 1.0001 * phiu1
            }
            CIU <- phiu1
          }
        } else if((y != n) & (x != m) & (x != 0) & (y != 0)){
          CIL <- uniroot(U, c(La, Lb), tol=tol)$root
          CIU <- uniroot(U, c(Ha, Hb), tol=tol)$root
        }
      }
      CI <- c(rat, CIL, CIU)
    }
    
    #-------------------------- Noether ------------------------------#
    
    if(method == "noether"){
      if((x == 0 & y == 0)|(x == 0 & y != 0)|(x != 0 & y == 0)|(x == m & y == n)){
        if(x == 0 & y == 0) {CIL <- 0;  CIU <- Inf; rat = 0; se.hat <- NA; varhat = NA}
        if(x == 0 & y != 0) {rat <- (x/m)/(y/n); CIL <- 0;  x <- 0.5
        nrat <- (x/m)/(y/n); se.hat <- nrat * sqrt((1/x) - (1/m) + (1/y) - (1/n))
        CIU <- nrat + z.star * se.hat}
        if(x != 0 & y == 0) {rat <- Inf; CIU <- Inf;  y <- 0.5
        nrat <- (x/m)/(y/n); se.hat <- nrat * sqrt((1/x) - (1/m) + (1/y) - (1/n))
        CIL <- nrat - z.star * se.hat}
        if(x == m & y == n) {
          rat <- (x/m)/(y/n); x <- m - 0.5; y <- n - 0.5; nrat <- (x/m)/(y/n); se.hat <- nrat * sqrt((1/x) - (1/m) + (1/y) - (1/n))
          CIU <- nrat + z.star * se.hat
          CIL <- nrat - z.star * se.hat
        }
      } else
      {
        rat <- (x/m)/(y/n)
        se.hat <- rat * sqrt((1/x) - (1/m) + (1/y) - (1/n))
        CIL <- rat - z.star * se.hat
        CIU <- rat + z.star * se.hat
      }
      varhat <- ifelse(is.na(se.hat), NA, se.hat^2)
      CI <- c(rat, max(0,CIL), CIU)
    }
    
    #------------------------- sinh-1 -----------------------------#
    
    if(method == "sinh-1"){
      
      if((x == 0 & y == 0)|(x == 0 & y != 0)|(x != 0 & y == 0)|(x == m & y == n)){
        if(x == 0 & y == 0) {CIL <- 0;  CIU <- Inf; rat = 0; varhat = NA}
        if(x == 0 & y != 0) {rat <- (x/m)/(y/n); CIL <- 0;  x <- z.star
        nrat <- (x/m)/(y/n); varhat <- 2 * asinh((z.star/2)*sqrt(1/x + 1/y - 1/m - 1/n))
        CIU <- exp(log(nrat) + varhat)}
        if(x != 0 & y == 0) {rat = Inf; CIU <- Inf;  y <- z.star
        nrat <- (x/m)/(y/n); varhat <- 2 * asinh((z.star/2)*sqrt(1/x + 1/y - 1/m - 1/n))
        CIL <- exp(log(nrat) - varhat)}
        if(x == m & y == n) {
          rat <- (x/m)/(y/n); x <- m - 0.5; y <- n - 0.5; nrat <- (x/m)/(y/n); varhat <- 2 * asinh((z.star/2)*sqrt(1/x + 1/y - 1/m - 1/n))
          CIL <- exp(log(nrat) - varhat)
          CIU <- exp(log(nrat) + varhat)
        }
      } else
      {rat <- (x/m)/(y/n); varhat <- 2 * asinh((z.star/2)*sqrt(1/x + 1/y - 1/m - 1/n))
      CIL <- exp(log(rat) - varhat)
      CIU <- exp(log(rat) + varhat)
      }
      CI <- c(rat, CIL, CIU)
    }
    
    #------------------------Results ------------------------------#
    
    # res <- list(CI = CI, varhat = varhat)
    CI
    
  }
  
  
  
  if(missing(sides))    sides <- match.arg(sides)
  if(missing(method))   method <- match.arg(method)

  # Recycle arguments
  lst <- Recycle(x1=x1, n1=n1, x2=x2, n2=n2, conf.level=conf.level, sides=sides, method=method)
  
  # iBinomRatioCI <- function(x, m, y, n, conf, method){
    
  res <- t(sapply(1:attr(lst, "maxdim"),
                  function(i) iBinomRatioCI(x=lst$x1[i], m=lst$n1[i], y=lst$x2[i], n=lst$n2[i],
                                            conf=lst$conf.level[i],
                                            sides=lst$sides[i],
                                            method=lst$method[i])))
  
  # get rownames
  lgn <- Recycle(x1=if(is.null(names(x1))) paste("x1", seq_along(x1), sep=".") else names(x1),
                 n1=if(is.null(names(n1))) paste("n1", seq_along(n1), sep=".") else names(n1),
                 x2=if(is.null(names(x2))) paste("x2", seq_along(x2), sep=".") else names(x2),
                 n2=if(is.null(names(n2))) paste("n2", seq_along(n2), sep=".") else names(n2),
                 conf.level=conf.level, sides=sides, method=method)
  
  xn <- apply(as.data.frame(lgn[sapply(lgn, function(x) length(unique(x)) != 1)]), 1, paste, collapse=":")
  
  return(SetNames(res, 
                  rownames=xn, 
                  colnames=c("est", "lwr.ci", "upr.ci")))
  
}





MultinomCI <- function(x, conf.level = 0.95, sides = c("two.sided","left","right"),
                       method = c("sisonglaz", "cplus1", "goodman", "wald", "waldcc", "wilson", "qh", "fs")) {

  # Code mainly by:
  # Pablo J. Villacorta Iglesias <pjvi@decsai.ugr.es>\n
  # Department of Computer Science and Artificial Intelligence, University of Granada (Spain)

  .moments <- function(c, lambda){

    a <- lambda + c
    b <- lambda - c
    if(b < 0) b <- 0
    if(b > 0) den <- ppois(a, lambda) - ppois(b-1, lambda)
    if(b == 0) den <- ppois(a,lambda)

    mu <- mat.or.vec(4,1)
    mom <- mat.or.vec(5,1)
    for(r in 1:4){
      poisA <- 0
      poisB <- 0

      if((a-r) >=0){ poisA <- ppois(a,lambda)-ppois(a-r,lambda) }
      if((a-r) < 0){ poisA <- ppois(a,lambda) }
      if((b-r-1) >=0){ poisB <- ppois(b-1,lambda)-ppois(b-r-1,lambda) }
      if((b-r-1) < 0 && (b-1)>=0){ poisB <- ppois(b-1,lambda) }
      if((b-r-1) < 0 && (b-1) < 0){ poisB <- 0 }

      mu[r] <- (lambda^r)*(1-(poisA-poisB)/den)
    }
    mom[1] <- mu[1]
    mom[2] <- mu[2] + mu[1] - mu[1]^2
    mom[3] <- mu[3] + mu[2]*(3-3*mu[1]) + (mu[1]-3*mu[1]^2+2*mu[1]^3)
    mom[4] <- mu[4] + mu[3]*(6-4*mu[1]) + mu[2]*(7-12*mu[1]+6*mu[1]^2)+mu[1]-4*mu[1]^2+6*mu[1]^3-3*mu[1]^4
    mom[5] <- den

    return(mom)

  }

  .truncpoi <- function(c, x, n, k){

    m <- matrix(0, k, 5)

    for(i in 1L:k){
      lambda <- x[i]
      mom <- .moments(c, lambda)
      for(j in 1L:5L){ m[i,j] <- mom[j] }
    }
    for(i in 1L:k){ m[i, 4] <- m[i, 4] - 3 * m[i, 2]^2 }

    s <- colSums(m)
    s1 <- s[1]
    s2 <- s[2]
    s3 <- s[3]
    s4 <- s[4]

    probn <- 1/(ppois(n,n)-ppois(n-1,n))
    z <- (n-s1)/sqrt(s2)
    g1 <- s3/(s2^(3/2))
    g2 <- s4/(s2^2)
    poly <- 1 + g1*(z^3-3*z)/6 + g2*(z^4-6*z^2+3)/24
    + g1^2*(z^6-15*z^4 + 45*z^2-15)/72
    f <- poly*exp(-z^2/2)/(sqrt(2)*gamma(0.5))

    probx <- 1
    for(i in 1L:k){ probx <- probx * m[i,5]  }

    return(probn * probx * f / sqrt(s2))
  }


  n <- sum(x, na.rm=TRUE)
  k <- length(x)
  p <- x/n

  if (missing(method)) method <- "sisonglaz"
  if(missing(sides)) sides <- "two.sided"

  sides <- match.arg(sides, choices = c("two.sided","left","right"), several.ok = FALSE)
  if(sides!="two.sided")
    conf.level <- 1 - 2*(1-conf.level)


  method <- match.arg(arg = method, choices = c("sisonglaz", "cplus1", "goodman", "wald", "waldcc", "wilson", "qh", "fs"))
  if(method == "goodman") {

    
    # erroneous: q.chi <- qchisq(conf.level, k - 1)
    # corrected on 
    
    q.chi <- qchisq(1 - (1-conf.level)/k, df = 1)
    lci <- (q.chi + 2*x - sqrt(q.chi*(q.chi + 4*x*(n-x)/n))) / (2*(n+q.chi))
    uci <- (q.chi + 2*x + sqrt(q.chi*(q.chi + 4*x*(n-x)/n))) / (2*(n+q.chi))

    res <- cbind(est=p, lwr.ci=pmax(0, lci), upr.ci=pmin(1, uci))

  } else if(method == "wald") {

    q.chi <- qchisq(conf.level, 1)
    lci <- p - sqrt(q.chi * p * (1 - p)/n)
    uci <- p + sqrt(q.chi * p * (1 - p)/n)

    res <- cbind(est=p, lwr.ci=pmax(0, lci), upr.ci=pmin(1, uci))

  } else if(method == "waldcc") {

    q.chi <- qchisq(conf.level, 1)
    lci <- p - sqrt(q.chi * p * (1 - p)/n) - 1/(2*n)
    uci <- p + sqrt(q.chi * p * (1 - p)/n) + 1/(2*n)

    res <- cbind(est=p, lwr.ci=pmax(0, lci), upr.ci=pmin(1, uci))

  } else if(method == "wilson") {

    q.chi <- qchisq(conf.level, 1)
    lci <- (q.chi + 2*x - sqrt(q.chi^2 + 4*x*q.chi * (1 - p))) / (2*(q.chi + n))
    uci <- (q.chi + 2*x + sqrt(q.chi^2 + 4*x*q.chi * (1 - p))) / (2*(q.chi + n))

    res <- cbind(est=p, lwr.ci=pmax(0, lci), upr.ci=pmin(1, uci))

  } else if (method == "fs") {
    
    # references Fitzpatrick, S. and Scott, A. (1987). Quick simultaneous confidence 
    # interval for multinomial proportions. 
    # Journal of American Statistical Association 82(399): 875-878.
    
    q.snorm <- qnorm(1-(1 - conf.level)/2)
    
    lci <- p - q.snorm / (2 * sqrt(n))
    uci <- p + q.snorm / (2 * sqrt(n))
    
    res <- cbind(est = p, lwr.ci = pmax(0, lci), upr.ci = pmin(1, uci))
  
  } else if (method == "qh") {
    
    # references Quesensberry, C.P. and Hurst, D.C. (1964). 
    # Large Sample Simultaneous Confidence Intervals for 
    # Multinational Proportions. Technometrics, 6: 191-195.
    
    q.chi <- qchisq(conf.level, df = k-1)
    
    lci <- (q.chi + 2*x - sqrt(q.chi^2 + 4*x*q.chi*(1 - p)))/(2*(q.chi+n))
    uci <- (q.chi + 2*x + sqrt(q.chi^2 + 4*x*q.chi*(1 - p)))/(2*(q.chi+n))
    
    res <- cbind(est = p, lwr.ci = pmax(0, lci), upr.ci = pmin(1, uci))
   
  } else {  # sisonglaz, cplus1

    const <- 0
    pold <- 0

    for(cc in 1:n){
      poi <- .truncpoi(cc, x, n, k)
      if(poi > conf.level && pold < conf.level) {
        const <- cc
        break
      }
      pold <- poi
    }

    delta <- (conf.level - pold)/(poi - pold)
    const <- const - 1

    if(method == "sisonglaz") {
      res <- cbind(est = p, lwr.ci = pmax(0, p - const/n), upr.ci = pmin(1, p + const/n + 2*delta/n))

    } else if(method == "cplus1") {
      res <- cbind(est = p, lwr.ci = pmax(0, p - const/n - 1/n), upr.ci = pmin(1,p + const/n + 1/n))
    }
  }

  if(sides=="left")
    res[,3] <- 1
  else if(sides=="right")
    res[,2] <- 0

  return(res)
}



# Confidence Intervals for Poisson mean

PoissonCI <- function(x, n = 1, conf.level = 0.95, sides = c("two.sided","left","right"),
                      method = c("exact","score", "wald","byar")) {

  if(missing(method)) method <- "exact"
  if(missing(sides)) sides <- "two.sided"


  iPoissonCI <- function(x, n = 1, conf.level = 0.95, sides = c("two.sided","left","right"),
                         method = c("exact","score", "wald","byar")) {

    # ref:  http://www.ijmo.org/papers/189-S083.pdf but wacklig!!!
    # http://www.math.montana.edu/~rjboik/classes/502/ci.pdf
    # http://www.ine.pt/revstat/pdf/rs120203.pdf
    # http://www.pvamu.edu/include/Math/AAM/AAM%20Vol%206,%20Issue%201%20(June%202011)/06_%20Kibria_AAM_R308_BK_090110_Vol_6_Issue_1.pdf

    # see also:   pois.conf.int {epitools}

    sides <- match.arg(sides, choices = c("two.sided","left","right"), several.ok = FALSE)
    if(sides!="two.sided")
      conf.level <- 1 - 2*(1-conf.level)


    if(missing(method)) method <- "score"

    if(length(conf.level) != 1)  stop("'conf.level' has to be of length 1 (confidence level)")
    if(conf.level < 0.5 | conf.level > 1)  stop("'conf.level' has to be in [0.5, 1]")

    alpha <- 1 - conf.level
    z <- qnorm(1-alpha/2)

    lambda <- x/n

    switch( match.arg(arg=method, choices=c("exact","score", "wald","byar"))
            , "exact" = {
              ci <- poisson.test(x, n, conf.level = conf.level)$conf.int
              lwr.ci <- ci[1]
              upr.ci <- ci[2]
            }
            , "score" = {
              term1 <- (x + z^2/2)/n
              term2 <- z * n^-0.5 * sqrt(x/n + z^2/(4*n))
              lwr.ci <- term1 - term2
              upr.ci <- term1 + term2
            }
            , "wald" = {
              term2 <- z*sqrt(lambda/n)
              lwr.ci <- lambda - term2
              upr.ci <- lambda + term2
            }
            , "byar" = {
              xcc <- x + 0.5
              zz  <- (z/3) * sqrt(1/xcc)
              lwr.ci <- (xcc * (1 - 1/(9 * xcc) - zz)^3)/n
              upr.ci <- (xcc * (1 - 1/(9 * xcc) + zz)^3)/n
            }

            # agresti-coull is the same as score
            #             , "agresti-coull" = {
            #               lwr.ci <- lambda + z^2/(2*n) - z*sqrt(lambda/n + z^2/(4*n^2))
            #               upr.ci <- lambda + z^2/(2*n) + z*sqrt(lambda/n + z^2/(4*n^2))
            #
            #             }
            # garwood is the same as exact, check that!!
            #             , "garwood" = {
            #               lwr.ci <- qchisq((1 - conf.level)/2, 2*x)/(2*n)
            #               upr.ci <- qchisq(1 - (1 - conf.level)/2, 2*(x + 1))/(2*n)
            #             }
    )

    ci <- c( est=lambda, lwr.ci=lwr.ci, upr.ci=upr.ci )

    if(sides=="left")
      ci[3] <- Inf
    else if(sides=="right")
      ci[2] <- -Inf

    return(ci)
  }

  # handle vectors
  # which parameter has the highest dimension
  lst <- list(x=x, n=n, conf.level=conf.level, sides=sides, method=method)
  maxdim <- max(unlist(lapply(lst, length)))
  # recycle all params to maxdim
  lgp <- lapply( lst, rep, length.out=maxdim )

  res <- sapply(1:maxdim, function(i) iPoissonCI(x=lgp$x[i], n=lgp$n[i],
                                                 conf.level=lgp$conf.level[i],
                                                 sides=lgp$sides[i],
                                                 method=lgp$method[i]))
  rownames(res)[1] <- c("est")

  lgn <- Recycle(x=if(is.null(names(x))) paste("x", seq_along(x), sep=".") else names(x),
                 n=if(is.null(names(n))) paste("n", seq_along(n), sep=".") else names(n),
                 conf.level=conf.level, sides=sides, method=method)
  xn <- apply(as.data.frame(lgn[sapply(lgn, function(x) length(unique(x)) != 1)]), 1, paste, collapse=":")

  colnames(res) <- xn

  return(t(res))

}








QuantileCI <- function(x, probs=seq(0, 1, .25), conf.level = 0.95, sides = c("two.sided", "left", "right"),
           na.rm = FALSE, method = c("exact", "boot"), R = 999) {
  
  .QuantileCI <- function(x, prob, conf.level = 0.95, sides = c("two.sided", "left", "right")) {
    # Near-symmetric distribution-free confidence interval for a quantile `q`.
  
    # https://stats.stackexchange.com/questions/99829/how-to-obtain-a-confidence-interval-for-a-percentile

    # Search over a small range of upper and lower order statistics for the 
    # closest coverage to 1-alpha (but not less than it, if possible).
    
    n <- length(x)
    alpha <- 1- conf.level
    
    
    if(sides == "two.sided"){

      u <- qbinom(p = 1-alpha/2, size = n, prob = prob) + (-2:2) + 1
      l <- qbinom(p = alpha/2, size = n, prob = prob) + (-2:2)
      
      u[u > n] <- Inf
      l[l < 0] <- -Inf
      
      coverage <- outer(l, u, function(a,b) pbinom(b-1, n, prob = prob) - pbinom(a-1, n, prob=prob))
      
      if (max(coverage) < 1-alpha) i <- which(coverage==max(coverage)) else
        i <- which(coverage == min(coverage[coverage >= 1-alpha]))
      
      # minimal difference
      i <- i[1]
      
      # order statistics and the actual coverage.
      u <- rep(u, each=5)[i]
      l <- rep(l, 5)[i]
      
      coverage <- coverage[i]

    } else if(sides == "left"){
      
      l <- qbinom(p = alpha, size = n, prob = prob)
      u <- Inf
      
      coverage <- 1 - pbinom(q = l-1, size = n, prob = prob)

    } else if(sides == "right"){
      
      l <- -Inf
      u <- qbinom(p = 1-alpha, size = n, prob = prob)
      
      coverage <- pbinom(q = u, size = n, prob = prob)

    } 

    # get the values  
    if(prob %nin% c(0,1))
      s <- sort(x, partial= c(u, l)[is.finite(c(u, l))])
    else
      s <- sort(x)
    
    res <- c(lwr.ci=s[l], upr.ci=s[u])
    attr(res, "conf.level") <- coverage
    
    if(sides=="left")
      res[2] <- Inf
    else if(sides=="right")
      res[1] <- -Inf
    
    return(res)
    
  }
  
  
  if (na.rm) x <- na.omit(x)
  if(anyNA(x))
    stop("missing values and NaN's not allowed if 'na.rm' is FALSE")
  
  sides <- match.arg(sides, choices = c("two.sided","left","right"), several.ok = FALSE)

  method <- match.arg(arg=method, choices=c("exact","boot"))
  
  switch( method
          , "exact" = { # this is the SAS-way to do it
            r <- lapply(probs, function(p) .QuantileCI(x, prob=p, conf.level = conf.level, sides=sides))
            coverage <- sapply(r, function(z) attr(z, "conf.level"))
            r <- do.call(rbind, r)
            attr(r, "conf.level") <- coverage
          }
          , "boot" = {
            
            if(sides!="two.sided")
              conf.level <- 1 - 2*(1-conf.level)
            
            r <- t(sapply(probs, 
                     function(p) {
                       boot.med <- boot(x, function(x, d) quantile(x[d], probs=p, na.rm=na.rm), R=R)
                       boot.ci(boot.med, conf=conf.level, type="basic")[[4]][4:5]
                     }))
          } )
  
  qq <- quantile(x, probs=probs, na.rm=na.rm)
  
  if(length(probs)==1){
    res <- c(qq, r)
    names(res) <- c("est","lwr.ci","upr.ci")
    # report the conf.level which can deviate from the required one
    if(method=="exact")  attr(res, "conf.level") <-  attr(r, "conf.level")
    
  } else {
    res <- cbind(qq, r)
    colnames(res) <- c("est","lwr.ci","upr.ci")
    # report the conf.level which can deviate from the required one
    if(method=="exact")  
      # report coverages for all probs
      attr(res, "conf.level") <-  attr(r, "conf.level")
    
  }
  
  return( res )
  
}




# standard error of mean
MeanSE <- function(x, sd = NULL, na.rm = FALSE) {
  if(na.rm) x <- na.omit(x)
  if(is.null(sd)) s <- sd(x)
  s/sqrt(length(x))
}




MeanCIn <- function(ci, sd, interval=c(2, 1e5), conf.level=0.95, norm=FALSE, 
                    tol = .Machine$double.eps^0.5) {
  
  width <- diff(ci)/2
  alpha <- (1-conf.level)/2
  
  if(width > sd){
    warning("Width of confidence intervall > 2*sd, samplesize n=1 is ok for that case.")
    return(1)
    
  } else {
    if(norm)
      uniroot(f = function(n) sd/sqrt(n) * qnorm(p = 1-alpha) - width, 
              interval = interval, tol = tol)$root
    else
      uniroot(f = function(n) (qt(1-alpha, df=n-1) * sd / sqrt(n)) - width, 
              interval = interval, tol = tol)$root
  }
}



MeanDiffCI <- function(x, ...){
  UseMethod("MeanDiffCI")
}


MeanDiffCI.formula <- function (formula, data, subset, na.action, ...) {

  # this is from t.test.formula

  if (missing(formula) || (length(formula) != 3L) || (length(attr(terms(formula[-2L]),
                                                                  "term.labels")) != 1L))
    stop("'formula' missing or incorrect")
  m <- match.call(expand.dots = FALSE)
  if (is.matrix(eval(m$data, parent.frame())))
    m$data <- as.data.frame(data)
  m[[1L]] <- as.name("model.frame")
  m$... <- NULL
  mf <- eval(m, parent.frame())
  DNAME <- paste(names(mf), collapse = " by ")
  names(mf) <- NULL
  response <- attr(attr(mf, "terms"), "response")
  g <- factor(mf[[-response]])
  if (nlevels(g) != 2L)
    stop("grouping factor must have exactly 2 levels")
  DATA <- setNames(split(mf[[response]], g), c("x", "y"))

  y <- DoCall("MeanDiffCI", c(DATA, list(...)))

  #   y$data.name <- DNAME
  #   if (length(y$estimate) == 2L)
  #     names(y$estimate) <- paste("mean in group", levels(g))
  y
}



MeanDiffCI.default <- function (x, y, method = c("classic", "norm","basic","stud","perc","bca"),
                                conf.level = 0.95, sides = c("two.sided","left","right"),
                                paired = FALSE, na.rm = FALSE, R=999, ...) {

  if (na.rm) {
    x <- na.omit(x)
    y <- na.omit(y)
  }

  sides <- match.arg(sides, choices = c("two.sided","left","right"), several.ok = FALSE)
  if(sides!="two.sided")
    conf.level <- 1 - 2*(1-conf.level)

  method <- match.arg(method, c("classic", "norm","basic","stud","perc","bca"))
  if(method == "classic"){
    a <- t.test(x, y, conf.level = conf.level, paired = paired)
    if(paired)
      res <- c(meandiff = mean(x - y), lwr.ci = a$conf.int[1], upr.ci = a$conf.int[2])
    else
      res <- c(meandiff = mean(x) - mean(y), lwr.ci = a$conf.int[1], upr.ci = a$conf.int[2])

  } else {

    diff.means <- function(d, f){
      n <- nrow(d)
      gp1 <- 1:table(as.numeric(d[,2]))[1]
      m1 <- sum(d[gp1,1] * f[gp1])/sum(f[gp1])
      m2 <- sum(d[-gp1,1] * f[-gp1])/sum(f[-gp1])
      m1 - m2
    }

    m <- cbind(c(x,y), c(rep(1,length(x)), rep(2,length(y))))

    if(paired)
      boot.fun <- boot(x-y, function(d, i) mean(d[i]), R=R, stype="i")
    else
      boot.fun <- boot(m, diff.means, R=R, stype="f", strata = m[,2])

    ci <- boot.ci(boot.fun, conf=conf.level, type=method)
    if(method == "norm"){
      res <- c(meandiff=boot.fun$t0, lwr.ci=ci[[4]][2], upr.ci=ci[[4]][3])
    } else {
      res <- c(meandiff=boot.fun$t0, lwr.ci=ci[[4]][4], upr.ci=ci[[4]][5])
    }
  }

  if(sides=="left")
    res[3] <- Inf
  else if(sides=="right")
    res[2] <- -Inf

  return(res)
}


# CohenEffectSize <- function(x){

# (C) Antti Arppe 2007-2011
# E-mail: antti.arppe@helsinki.fi

# Cohen's Effect Size (1988)
# e0 <- matrix(,ctable.rows,ctable.cols)
# for(i in 1:ctable.rows)
# for(j in 1:ctable.cols)
# e0[i,j] <- sum.row[i]*sum.col[j]/N
# p0 <- e0/N
# p1 <- ctable/N
# effect.size <- sqrt(sum(((p1-p0)^2)/p0))
# noncentrality <- N*(effect.size^2)
# d.f=(ctable.rows-1)*(ctable.cols-1)
# beta <- pchisq(qchisq(alpha,df=d.f,lower.tail=FALSE),df=d.f,ncp=noncentrality)
# power <- 1-beta

# return(effect.size)
# }


.cohen_d_ci <- function (d, n = NULL, n2 = NULL, n1 = NULL, alpha = 0.05) {
  
  # William Revelle in psych
  
  d2t <- function (d, n = NULL, n2 = NULL, n1 = NULL) {
    
    if (is.null(n1)) {
      t <- d * sqrt(n)/2
    } else if (is.null(n2)) {
      t <- d * sqrt(n1)
    } else {
      t <- d/sqrt(1/n1 + 1/n2)
    }
    return(t)
  }
  
  t2d <- function (t, n = NULL, n2 = NULL, n1 = NULL) {
    
    if (is.null(n1)) {
      d <- 2 * t/sqrt(n)
    } else {
      if (is.null(n2)) {
        d <- t/sqrt(n1)
      } else {
        d <- t * sqrt(1/n1 + 1/n2)
      }
    }
    return(d)
  }
  
  t <- d2t(d = d, n = n, n2 = n2, n1 = n1)
  tail <- 1 - alpha/2
  ci <- matrix(NA, ncol = 3, nrow = length(d))
  for (i in 1:length(d)) {
    nmax <- max(c(n/2 + 1, n1 + 1, n1 + n2))
    upper <- try(t2d(uniroot(function(x) {
      suppressWarnings(pt(q = t[i], df = nmax - 2, ncp = x)) - 
        alpha/2
    }, c(min(-5, -abs(t[i]) * 10), max(5, abs(t[i]) * 10)))$root, 
    n = n[i], n2 = n2[i], n1 = n1[i]), silent = TRUE)
    if (inherits(upper, "try-error")) {
      ci[i, 3] <- NA
    }
    else {
      ci[i, 3] <- upper
    }
    ci[i, 2] <- d[i]
    lower.ci <- try(t2d(uniroot(function(x) {
      suppressWarnings(pt(q = t[i], df = nmax - 2, ncp = x)) - 
        tail
    }, c(min(-5, -abs(t[i]) * 10), max(5, abs(t[i]) * 10)))$root, 
    n = n[i], n2 = n2[i], n1 = n1[i]), silent = TRUE)
    if (inherits(lower.ci, "try-error")) {
      ci[i, 1] <- NA
    }
    else {
      ci[i, 1] <- lower.ci
    }
  }
  colnames(ci) <- c("lower", "effect", "upper")
  rownames(ci) <- names(d)
  return(ci)
  
}



CohenD <- function(x, y=NULL, pooled = TRUE, correct = FALSE, conf.level = NA, na.rm = FALSE) {

  if (na.rm) {
    x <- na.omit(x)
    if(!is.null(y)) y <- na.omit(y)
  }

  if(is.null(y)){   # one sample Cohen d
    d <- mean(x) / sd(x)
    n <- length(x)
    if(!is.na(conf.level)){
      # # reference: Smithson Confidence Intervals pp. 36:
      # ci <- .nctCI(d / sqrt(n), df = n-1, conf = conf.level)
      # res <- c(d=d, lwr.ci=ci[1]/sqrt(n), upr.ci=ci[3]/sqrt(n))
      # changed to Revelle 2022-10-22:
      ci <- .cohen_d_ci(d = d, n = n, alpha = 1-conf.level)
      res <- c(d=d, lwr.ci=ci[1], upr.ci=ci[3])
      
    } else {
      res <- d
    }
  } else {

    meanx <- mean(x)
    meany <- mean(y)
    #     ssqx <- sum((x - meanx)^2)
    #     ssqy <- sum((y - meany)^2)
    nx <- length(x)
    ny <- length(y)

    DF <- nx + ny - 2
    d <- (meanx - meany)

    if(pooled){
      d <- d / sqrt(((nx - 1) * var(x) + (ny - 1) * var(y)) / DF)
    }else{
      d <- d / sd(c(x, y))
    }

    #  if(unbiased) d <- d * gamma(DF/2)/(sqrt(DF/2) * gamma((DF - 1)/2))

    if(correct){  # "Hedges's g"
      # Hedges, L. V. & Olkin, I. (1985). Statistical methods for meta-analysis. Orlando, FL: Academic Press.
      d <- d * (1 - 3 / ( 4 * (nx + ny) - 9))
    }

    if(!is.na(conf.level)) {
      # old:
      # The Handbook of Research Synthesis and Meta-Analysis (Cooper, Hedges, & Valentine, 2009)
      ## p 238
      # ci <- d + c(-1, 1) * sqrt(((nx+ny) / (nx*ny) + .5 * d^2 / DF) * ((nx + ny)/DF)) * qt((1 - conf.level) / 2, DF)

      # # supposed to be better, Smithson's version:
      # ci <- .nctCI(d / sqrt(nx*ny/(nx+ny)), df = DF, conf = conf.level)
      # res <- c(d=d, lwr.ci=ci[1]/sqrt(nx*ny/(nx+ny)), upr.ci=ci[3]/sqrt(nx*ny/(nx+ny)))

      # changed to Revelle      
      ci <- .cohen_d_ci(d, n2 = nx, n1 = ny, alpha = 1-conf.level)
      res <- c(d=d, lwr.ci=unname(ci[1]), upr.ci=unname(ci[3]))
      
    } else {
      res <- d
    }
  }

  ## Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155-159. Crow, E. L. (1991).
  attr(res, "magnitude") <- c("negligible","small","medium","large")[findInterval(abs(d), c(0.2, 0.5, 0.8)) + 1]

  return(res)

}




# find non-centrality parameter for the F-distribution
ncparamF <- function(type1, type2, nu1, nu2) {
  
  # author Ali Baharev <ali.baharev at gmail.com>
  
  # Returns the noncentrality parameter of the noncentral F distribution 
  # if probability of Type I and Type II error, degrees of freedom of the 
  # numerator and the denominator in the F test statistics are given.
  
  
  .C("fpow",  PACKAGE = "DescTools", as.double(type1), as.double(type2), 
     as.double(nu1), as.double(nu2), lambda=double(1))$lambda
}



.nctCI <- function(t, df, conf) {
  
  alpha <- 1 - conf
  probs <- c(alpha/2, 1 - alpha/2)
  
  ncp <- suppressWarnings(optim(par = 1.1 * rep(t, 2), fn = function(x) {
    p <- pt(q = t, df = df, ncp = x)
    abs(max(p) - probs[2]) + abs(min(p) - probs[1])
  }, control = list(abstol = 0.000000001)))
  
  t_ncp <- unname(sort(ncp$par))
  
  return(t_ncp)
  
}



# .nctCI <- function(tval.1, df, conf) {
# 
#   # Function for finding the upper and lower confidence limits for the noncentrality from noncentral t distributions.
#   # Especially helpful when forming confidence intervals around the standardized effect size, Cohen's d.
# 
#   ###################################################################################################################
#   # The following code was adapted from code written by Michael Smithson:
#   # Australian National University, sometime around the early part of October, 2001
#   # Adapted by Joe Rausch & Ken Kelley: University of Notre Dame, in January 2002.
#   # Available at: JRausch@nd.edu & KKelley@nd.edu
#   ###################################################################################################################
# 
# 
#   # tval.1 is the observed t value, df is the degrees of freedom (group size need not be equal), and conf is simply 1 - alpha
# 
#   #         Result <- matrix(NA,1,4)
#   tval <- abs(tval.1)
# 
# 
#   ############################This part Finds the Lower bound for the confidence interval###########################
#   ulim <- 1 - (1-conf)/2
# 
#   # This first part finds a lower value from which to start.
#   lc <- c(-tval,tval/2,tval)
#   while(pt(tval, df, lc[1])<ulim)    {
#     lc <- c(lc[1]-tval,lc[1],lc[3])
#   }
# 
#   # This next part finds the lower limit for the ncp.
#   diff <- 1
#   while(diff > .00000001)    {
#     if(pt(tval, df, lc[2]) <ulim)
#       lc <- c(lc[1],(lc[1]+lc[2])/2,lc[2])
#     else lc <- c(lc[2],(lc[2]+lc[3])/2,lc[3])
#     diff <- abs(pt(tval,df,lc[2]) - ulim)
#     ucdf <- pt(tval,df,lc[2])
#   }
#   res.1 <- ifelse(tval.1 >= 0,lc[2],-lc[2])
# 
#   ############################This part Finds the Upper bound for the confidence interval###########################
#   llim <- (1-conf)/2
# 
#   # This first part finds an upper value from which to start.
#   uc <- c(tval,1.5*tval,2*tval)
#   while(pt(tval,df,uc[3])>llim)   {
#     uc <- c(uc[1],uc[3],uc[3]+tval)
#   }
# 
#   # This next part finds the upper limit for the ncp.
#   diff <- 1
#   while(diff > .00000001)         {
#     if(pt(tval,df,uc[2])<llim)
#       uc <- c(uc[1],(uc[1]+uc[2])/2,uc[2])
#     else uc <- c(uc[2],(uc[2]+uc[3])/2,uc[3])
#     diff <- abs(pt(tval,df,uc[2]) - llim)
#     lcdf <- pt(tval,df,uc[2])
#   }
#   res <- ifelse(tval.1 >= 0,uc[2],-uc[2])
# 
# 
#   #################################This part Compiles the results into a matrix#####################################
# 
#   return(c(lwr.ci=min(res, res.1), lprob=ucdf, upr.ci=max(res, res.1), uprob=lcdf))
# 
#   #        Result[1,1] <- min(res,res.1)
#   #         Result[1,2] <- ucdf
#   #         Result[1,3] <- max(res,res.1)
#   #         Result[1,4] <- lcdf
#   # dimnames(Result) <- list("Values", c("Lower.Limit", "Prob.Low.Limit", "Upper.Limit", "Prob.Up.Limit"))
#   #         Result
# }



CoefVar <- function (x, ...) {
  UseMethod("CoefVar")
}



CoefVar.lm <- function (x, unbiased = FALSE, na.rm = FALSE, ...) {

  # source:  http://www.ats.ucla.edu/stat/mult_pkg/faq/general/coefficient_of_variation.htm

  # In the modeling setting, the CV is calculated as the ratio of the root mean squared error (RMSE)
  # to the mean of the dependent variable.

  # root mean squared error
  rmse <- sqrt(sum(x$residuals^2) / x$df.residual)
  res <- rmse / mean(x$model[[1]], na.rm=na.rm)

  # This is the same approach as in CoefVar.default, but it's not clear
  # if it is correct in the environment of a model
  n <- x$df.residual
  if (unbiased) {
    res <- res * ((1 - (1/(4 * (n - 1))) + (1/n) * res^2) +
                    (1/(2 * (n - 1)^2)))
  }
  
  # if (!is.na(conf.level)) {
  #   ci <- .nctCI(sqrt(n)/res, df = n - 1, conf = conf.level)
  #   res <- c(est = res, low.ci = unname(sqrt(n)/ci["upr.ci"]),
  #            upr.ci = unname(sqrt(n)/ci["lwr.ci"]))
  # }

  return(res)

}

# interface for lme???
# dependent variable in lme
# dv <- unname(nlme::getResponse(x))


# CoefVar.default <- function (x, weights=NULL, unbiased = FALSE, conf.level = NA, na.rm = FALSE, ...) {
# 
#   if(is.null(weights)){
#     if(na.rm) x <- na.omit(x)
#     res <- SD(x) / Mean(x)
#     n <- length(x)
#     
#   }
#   else {
#     res <- SD(x, weights = weights) / Mean(x, weights = weights)
#     n <- sum(weights)
#     
#   }
# 
#   if(unbiased) {
#     res <- res * ((1 - (1/(4*(n-1))) + (1/n) * res^2)+(1/(2*(n-1)^2)))
#   }
# 
#   if(!is.na(conf.level)){
#     ci <- .nctCI(sqrt(n)/res, df = n-1, conf = conf.level)
#     res <- c(est=res, low.ci= unname(sqrt(n)/ci["upr.ci"]), upr.ci= unname(sqrt(n)/ci["lwr.ci"]))
#   }
# 
#   return(res)
# 
# }



CoefVarCI <- function (K, n, conf.level = 0.95, 
                       sides = c("two.sided", "left", "right"), 
                       method = c("nct","vangel","mckay","verrill","naive")) {

  # Description of confidence intervals
  # https://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/coefvacl.htm

  
  .iCoefVarCI <- Vectorize(function(K, n, conf.level=0.95, 
                                    sides = c("two.sided", "left", "right"), 
                                    method = c("vangel","mckay","verrill","nct","naive")) {
    
    method <- match.arg(method)
    sides <- match.arg(sides, choices = c("two.sided", "left", "right"), 
                       several.ok = FALSE)
    
    # double alpha in case of one-sided intervals in order to be able
    # to generally calculate twosided intervals and select afterwards..
    if (sides != "two.sided") 
      conf.level <- 1 - 2 * (1 - conf.level)
    
    alpha <- 1 - conf.level
    
    df <- n - 1
    u1 <- qchisq(1-alpha/2, df)
    u2 <- qchisq(alpha/2, df)
    
    switch(method, verrill = {
      CI.lower <- 0
      CI.upper <- 1
      
    }, vangel = {
      CI.lower <- K / sqrt(((u1+2)/n - 1) * K^2 + u1/df)
      CI.upper <- K / sqrt(((u2+2)/n - 1) * K^2 + u2/df)
      
    }, mckay = {
      CI.lower <- K / sqrt((u1/n - 1) * K^2 + u1/df)
      CI.upper <- K / sqrt((u2/n - 1) * K^2 + u2/df)
      
    }, nct = {
      ci <- .nctCI(sqrt(n)/K, df = df, conf = conf.level)
      CI.lower <- unname(sqrt(n)/ci[2])
      CI.upper <- unname(sqrt(n)/ci[1])
      
    }, naive = {
      CI.lower <- K * sqrt(df / u1)
      CI.upper <- K * sqrt(df / u2)
    }
    )
    
    ci <- c(est = K, 
            lwr.ci = CI.lower, # max(0, CI.lower), 
            upr.ci = CI.upper) # min(1, CI.upper))
    
    if (sides == "left") 
      ci[3] <- Inf
    
    else if (sides == "right") 
      ci[2] <- -Inf
    
    return(ci)
    
  })
  

  sides <- match.arg(sides)
  method <- match.arg(method)
  
  res <- t(.iCoefVarCI(K=K, n=n, method=method, sides=sides, conf.level = conf.level))

  return(res)
  
}  


CoefVar.default <- function (x, weights = NULL, unbiased = FALSE, 
                             na.rm = FALSE, ...) {
                
  
  if (is.null(weights)) {
    if (na.rm) 
      x <- na.omit(x)
    res <- SD(x)/Mean(x)
    n <- length(x)
    
  } else {
    res <- SD(x, weights = weights)/Mean(x, weights = weights)
    n <- sum(weights)
  }
  
  if (unbiased) {
    res <- res * ((1 - (1/(4 * (n - 1))) + (1/n) * res^2) + (1/(2 * (n - 1)^2)))
  }

  return(res)
}


# aus agricolae: Variations Koeffizient aus aov objekt
#
# CoefVar.aov <- function(x){
#   return(sqrt(sum(x$residual^2) / x$df.residual) / mean(x$fitted.values))
# }


CoefVar.aov <- function (x, unbiased = FALSE, na.rm = FALSE, ...) {

  # source:  http://www.ats.ucla.edu/stat/mult_pkg/faq/general/coefficient_of_variation.htm

  # In the modeling setting, the CV is calculated as the ratio of the root mean squared error (RMSE)
  # to the mean of the dependent variable.

  # root mean squared error
  rmse <- sqrt(sum(x$residuals^2) / x$df.residual)
  res <- rmse / mean(x$model[[1]], na.rm=na.rm)

  # This is the same approach as in CoefVar.default, but it's not clear
  # if it is correct in the enviroment of a model
  n <- x$df.residual
  if (unbiased) {
    res <- res * ((1 - (1/(4 * (n - 1))) + (1/n) * res^2) +
                    (1/(2 * (n - 1)^2)))
  }
  
  # if (!is.na(conf.level)) {
  #   ci <- .nctCI(sqrt(n)/res, df = n - 1, conf = conf.level)
  #   res <- c(est = res, low.ci = unname(sqrt(n)/ci["upr.ci"]),
  #            upr.ci = unname(sqrt(n)/ci["lwr.ci"]))
  # }

  return(res)

}



VarCI <- function (x, method = c("classic", "bonett", "norm", "basic","stud","perc","bca"),
                   conf.level = 0.95, sides = c("two.sided","left","right"), na.rm = FALSE, R=999) {

  if (na.rm) x <- na.omit(x)
  method <- match.arg(method, c("classic","bonett", "norm","basic","stud","perc","bca"))

  sides <- match.arg(sides, choices = c("two.sided","left","right"), several.ok = FALSE)
  if(sides!="two.sided")
    conf.level <- 1 - 2*(1-conf.level)

  if(method == "classic"){
    df <- length(x) - 1
    v <- var(x)
    res <- c (var = v, lwr.ci = df * v/qchisq((1 - conf.level)/2, df, lower.tail = FALSE)
              , upr.ci = df * v/qchisq((1 - conf.level)/2, df) )

  } else if(method=="bonett") {

    z <- qnorm(1-(1-conf.level)/2)
    n <- length(x)
    cc <- n/(n-z)
    v <- var(x)
    mtr <- mean(x, trim = 1/(2*(n-4)^0.5))
    m <- mean(x)
    gam4 <- n * sum((x-mtr)^4) / (sum((x-m)^2))^2
    se <- cc * sqrt((gam4 - (n-3)/n)/(n-1))
    lci <- exp(log(cc * v) - z*se)
    uci <- exp(log(cc * v) + z*se)

    res <- c(var=v, lwr.ci=lci, upr.ci=uci)

  } else {
    boot.fun <- boot(x, function(x, d) var(x[d], na.rm=na.rm), R=R)
    ci <- boot.ci(boot.fun, conf=conf.level, type=method)
    if(method == "norm"){
      res <- c(var=boot.fun$t0, lwr.ci=ci[[4]][2], upr.ci=ci[[4]][3])
    } else {
      res <- c(var=boot.fun$t0, lwr.ci=ci[[4]][4], upr.ci=ci[[4]][5])
    }
  }

  if(sides=="left")
    res[3] <- Inf
  else if(sides=="right")
    res[2] <- 0

  return(res)
}



## stats: Lorenz, <- & ineq ====

Lc <- function(x, ...)
  UseMethod("Lc")


Lc.formula <- function(formula, data, subset, na.action, ...) {

  # this is taken basically from wilcox.test.formula

  if (missing(formula) || (length(formula) != 3L) || (length(attr(terms(formula[-2L]),
                                                                  "term.labels")) != 1L))
    stop("'formula' missing or incorrect")

  m <- match.call(expand.dots = FALSE)
  if (is.matrix(eval(m$data, parent.frame())))
    m$data <- as.data.frame(data)
  m[[1L]] <- as.name("model.frame")
  m$... <- NULL
  mf <- eval(m, parent.frame())
  #   mf$na.action <- substitute(na.action)
  #   DNAME <- paste(names(mf), collapse = " by ")
  #
  #   DATA <- list(table(mf))
  #   do.call("Lc", c(DATA, list(...)))
  drop <- TRUE
  #   mf <- model.frame(x, data)
  x <- split(x = mf[,1], f = mf[,2], drop=drop, ...)

  res <- lapply(x, FUN = "Lc", ...)
  class(res) <- "Lclist"

  return(res)

}


Lc.default <- function(x, n = rep(1, length(x)), na.rm = FALSE, ...) {

  xx <- x
  nn <- n

  g <- Gini(x, n, na.rm=na.rm)

  if(na.rm) x <- na.omit(x)
  if (any(is.na(x)) || any(x < 0)) return(NA_real_)

  k <- length(x)
  o <- order(x)
  x <- x[o]
  n <- n[o]
  x <- n*x
  p <- cumsum(n)/sum(n)
  L <- cumsum(x)/sum(x)
  p <- c(0,p)
  L <- c(0,L)
  L2 <- L * mean(x)
  Lc <- list(p, L, L2, g, xx, nn)
  names(Lc) <- c("p", "L", "L.general", "Gini", "x", "n")
  class(Lc) <- "Lc"

  # no plot anymore, we have plot(lc) and Desc(lc, plotit=TRUE)
  # if(plot) plot(Lc)
  Lc
}


plot.Lc <- function(x, general=FALSE, lwd=2, type="l", xlab="p", ylab="L(p)",
                    main="Lorenz curve", las=1, pch=NA, ...)  {
  if(!general)
    L <- x$L
  else
    L <- x$L.general
  plot(x$p, L, type=type, main=main, lwd=lwd, xlab=xlab, ylab=ylab, xaxs="i",
       yaxs="i", las=las, ...)

  abline(0, max(L))

  if(!is.na(pch)){
    opar <- par(xpd=TRUE)
    on.exit(par(opar))
    points(x$p, L, pch=pch, ...)
  }

}


lines.Lc <- function(x, general=FALSE, lwd=2, conf.level = NA, args.cband = NULL, ...) {

  # Lc.boot.ci <- function(x, conf.level=0.95, n=1000){
  #
  #   x <- rep(x$x, times=x$n)
  #   m <- matrix(sapply(1:n, function(i) sample(x, replace = TRUE)), nrow=length(x))
  #
  #   lst <- apply(m, 2, Lc)
  #   list(x=c(lst[[1]]$p, rev(lst[[1]]$p)),
  #        y=c(apply(do.call(rbind, lapply(lst, "[[", "L")), 2, quantile, probs=(1-conf.level)/2),
  #            rev(apply(do.call(rbind, lapply(lst, "[[", "L")), 2, quantile, probs=1-(1-conf.level)/2)))
  #        )
  # }
  #
  #
  if(!general)
    L <- x$L
  else
    L <- x$L.general


  if (!(is.na(conf.level) || identical(args.cband, NA)) ) {


    args.cband1 <- list(col = SetAlpha(DescToolsOptions("col")[1], 0.12), border = NA)
    if (!is.null(args.cband))
      args.cband1[names(args.cband)] <- args.cband

#    ci <- Lc.boot.ci(x, conf.level=conf.level) # Vertrauensband
    ci <- predict(object=x, conf.level=conf.level, general=general)
    do.call("DrawBand", c(args.cband1, list(x=c(ci$p, rev(ci$p))),
                                       list(y=c(ci$lci, rev(ci$uci)))))
  }


  lines(x$p, L, lwd=lwd, ...)

}


plot.Lclist <- function(x, col=1, lwd=2, lty=1, main = "Lorenz curve",
                        xlab="p", ylab="L(p)", ...){

  # Recycle arguments
  lgp <- Recycle(x=seq_along(x), col=col, lwd=lwd, lty=lty)

  plot(x[[1]], col=lgp$col[1], lwd=lgp$lwd[1], lty=lgp$lty[1], main=main, xlab=xlab, ylab=ylab, ...)
  for(i in 2L:length(x)){
    lines(x[[i]], col=lgp$col[i], lwd=lgp$lwd[i], lty=lgp$lty[i])
  }
}


predict.Lc <- function(object, newdata, conf.level=NA, general=FALSE, n=1000, ...){

  confint.Lc <- function(object, conf.level = 0.95, general=FALSE, n=1000, ...){

    x <- rep(object$x, times=object$n)
    m <- replicate(n = n, sample(x, replace = TRUE))

    lst <- apply(m, 2, Lc)

    list(x=lst[[1]]$p,
         lci=apply(do.call(rbind, lapply(lst, "[[", ifelse(general, "L.general", "L"))), 2, quantile, probs=(1-conf.level)/2),
         uci=apply(do.call(rbind, lapply(lst, "[[", ifelse(general, "L.general", "L"))), 2, quantile, probs=1-(1-conf.level)/2)
    )
  }

  if(!general)
    L <- object$L
  else
    L <- object$L.general


  if(missing(newdata)){
    newdata <- object$p
    res <- data.frame(p=object$p, L=L)
  } else {
    res <- do.call(data.frame, approx(x=object$p, y=L, xout=newdata))
    colnames(res) <- c("p", "L")
  }

  if(!identical(conf.level, NA)){

    ci <- confint.Lc(object, conf.level=conf.level, general=general, n=n)

    lci <- approx(x=ci$x, y=ci$lci, xout=newdata)
    uci <- approx(x=ci$x, y=ci$uci, xout=newdata)

    res <- data.frame(res, lci=lci$y, uci=uci$y)

  }

  res

}

# Original Zeileis:
# Gini <- function(x)
# {
#   n <- length(x)
#   x <- sort(x)
#   G <- sum(x * 1:n)
#   G <- 2*G/(n*sum(x))
#   G - 1 - (1/n)
# }

# other:
# http://rss.acs.unt.edu/Rdoc/library/reldist/html/gini.html
# http://finzi.psych.upenn.edu/R/library/dplR/html/gini.coef.html


# Gini <- function(x, n = rep(1, length(x)), unbiased = TRUE, conf.level = NA, R = 1000, type = "bca", na.rm = FALSE) {
# 
#   # cast to numeric, as else sum(x * 1:n) might overflow for integers
#   # http://stackoverflow.com/questions/39579029/integer-overflow-error-using-gini-function-of-package-desctools
#   x <- as.numeric(x)
# 
#   x <- rep(x, n)    # same handling as Lc
#   if(na.rm) x <- na.omit(x)
#   if (any(is.na(x)) || any(x < 0)) return(NA_real_)
# 
#   i.gini <- function (x, unbiased = TRUE){
#     n <- length(x)
#     x <- sort(x)
# 
#     res <- 2 * sum(x * 1:n) / (n*sum(x)) - 1 - (1/n)
#     if(unbiased) res <- n / (n - 1) * res
# 
#     # limit Gini to 0 here, if negative values appear, which is the case with
#     # Gini( c(10,10,10))
#     return( pmax(0, res))
# 
#     # other guy out there:
#     #     N <- if (unbiased) n * (n - 1) else n * n
#     #     dsum <- drop(crossprod(2 * 1:n - n - 1, x))
#     #     dsum / (mean(x) * N)
#     # is this slower, than above implementation??
#   }
# 
#   if(is.na(conf.level)){
#     res <- i.gini(x, unbiased = unbiased)
# 
#   } else {
#     # adjusted bootstrap percentile (BCa) interval
#     boot.gini <- boot(x, function(x, d) i.gini(x[d], unbiased = unbiased), R=R)
#     ci <- boot.ci(boot.gini, conf=conf.level, type=type)
#     res <- c(gini=boot.gini$t0, lwr.ci=ci[[4]][4], upr.ci=ci[[4]][5])
#   }
# 
#   return(res)
# 
# }



# recoded for better support weights 2022-09-14

Gini <- function(x, weights=NULL, unbiased=TRUE,  
                 conf.level = NA, R = 10000, type = "bca", na.rm=FALSE) {
  
  # https://core.ac.uk/download/pdf/41339501.pdf
  
  if (is.null(weights)) {
    weights <- rep(1, length(x))
  }
  
  if (na.rm){
    na <- (is.na(x) | is.na(weights))
    x <- x[!na]
    weights <- weights[!na]
  } 
  
  if (any(is.na(x)) || any(x < 0)) 
    return(NA_real_)
  
  
  
  i.gini <- function(x, w, unbiased=FALSE) {
    
    w <- w/sum(w)
    
    x <- x[id <- order(x)]
    w <- w[id]
    
    f.hat <- w / 2 + c(0, head(cumsum(w), -1))
    wm <- Mean(x, w)
    
    res <- 2 / wm * sum(w * (x - wm) * (f.hat - Mean(f.hat, w)))
    
    if(unbiased)
      res <- res * 1/(1 - sum(w^2))
    
    return(res)
  }
  
  
  if (is.na(conf.level)) {
    res <- i.gini(x, weights, unbiased = unbiased)
    
  } else {
    
    boot.gini <- boot(data = x,
                      statistic = function(z, i, u, unbiased) 
                        i.gini(x = z[i], w = u[i], unbiased = unbiased), 
                      R=R, u=weights, unbiased=unbiased)
    ci <- boot.ci(boot.gini, conf = conf.level, type = type)
    res <- c(gini = boot.gini$t0, lwr.ci = ci[[4]][4], upr.ci = ci[[4]][5])
    
  }
  
  return(res)
  
}






GiniSimpson <- function(x, na.rm = FALSE) {


  # referenz:   Sachs, Angewandte Statistik, S. 57

  # example:
  # x <- as.table(c(69,17,7,62))
  # rownames(x) <- c("A","B","AB","0")
  # GiniSimpson(x)

  if(!is.factor(x)){
    warning("x is not a factor!")
    return(NA)
  }
  
  if(na.rm) x <- na.omit(x)

  ptab <- prop.table(table(x))
  return(sum(ptab*(1-ptab)))
  
}


GiniDeltas <- function (x, na.rm = FALSE) {
  
  # Deltas (2003, DOI:10.1162/rest.2003.85.1.226).
  
  if (!is.factor(x)) {
    warning("x is not a factor!")
    return(NA)
  }
  if (na.rm) 
    x <- na.omit(x)
  
  p <- prop.table(table(x))
  sum(p * (1 - p)) * length(p)/(length(p) - 1)
  
}



HunterGaston <- function(x, na.rm = FALSE){

  # Hunter-Gaston index (Hunter & Gaston, 1988, DOI:10.1128/jcm.26.11.2465-2466.1988)
  # Credits to Wim Bernasco
  # https://github.com/AndriSignorell/DescTools/issues/120
  
  # see: vegan::simpson.unb(BCI)
  
  
  if (is.factor(x) | is.character(x)) {
    if (na.rm) 
      x <- na.omit(x)
    tt <- table(x)
  } else {
    tt <- x
  }
  
  sum(tt * (tt - 1)) / (sum(tt) * (sum(tt) - 1))

  # shouldn't this be: 
  # 1 - sum(tt * (tt - 1)) / (sum(tt) * (sum(tt) - 1))
  # ???

}





Atkinson <- function(x, n = rep(1, length(x)), parameter = 0.5, na.rm = FALSE) {

  x <- rep(x, n)    # same handling as Lc and Gini
  if(na.rm) x <- na.omit(x)
  if (any(is.na(x)) || any(x < 0)) return(NA_real_)

  if(is.null(parameter)) parameter <- 0.5
  if(parameter==1)
    A <- 1 - (exp(mean(log(x)))/mean(x))
  else
  {
    x <- (x/mean(x))^(1-parameter)
    A <- 1 - mean(x)^(1/(1-parameter))
  }
  A
}

Herfindahl <- function(x, n = rep(1, length(x)), parameter=1, na.rm = FALSE) {

  x <- rep(x, n)    # same handling as Lc and Gini
  if(na.rm) x <- na.omit(x)
  if (any(is.na(x)) || any(x < 0)) return(NA_real_)

  if(is.null(parameter))
    m <- 1
  else
    m <- parameter
  Herf <- x/sum(x)
  Herf <- Herf^(m+1)
  Herf <- sum(Herf)^(1/m)
  Herf
}

Rosenbluth <- function(x, n = rep(1, length(x)), na.rm = FALSE) {

  x <- rep(x, n)    # same handling as Lc and Gini
  if(na.rm) x <- na.omit(x)
  if (any(is.na(x)) || any(x < 0)) return(NA_real_)

  n <- length(x)
  x <- sort(x)
  HT <- (n:1)*x
  HT <- 2*sum(HT/sum(x))
  HT <- 1/(HT-1)
  HT
}

###

## stats: assocs etc. ====


CutAge <- function(x, from=0, to=90, by=10, right=FALSE, ordered_result=TRUE, ...){
  cut(x, breaks = c(seq(from, to, by), Inf), 
      right=right, ordered_result = ordered_result, ...)
}



CutQ <- function(x, breaks=quantile(x, seq(0, 1, by=0.25), na.rm=TRUE), 
                 labels=NULL, na.rm = FALSE, ...){

  # old version:
  #  cut(x, breaks=probsile(x, breaks=probs, na.rm = na.rm), include.lowest=TRUE, labels=labels)

  # $Id: probscut.R 1431 2010-04-28 17:23:08Z ggrothendieck2 $
  # from gtools

  if(na.rm) x <- na.omit(x)

  if(length(breaks)==1 && IsWhole(breaks))
    breaks <- quantile(x, seq(0, 1, by = 1/breaks), na.rm = TRUE)
  
  if(is.null(labels)) labels <- gettextf("Q%s", 1:(length(breaks)-1))

  # probs <- quantile(x, probs)
  dups <- duplicated(breaks)
  if(any(dups)) {

    flag <- x %in% unique(breaks[dups])
    retval <- ifelse(flag, paste("[", as.character(x), "]", sep=''), NA)
    uniqs <- unique(breaks)

    # move cut points over a bit...
    reposition <- function(cut) {
      flag <- x>=cut
      if(sum(flag)==0)
        return(cut)
      else
        return(min(x[flag]))
    }

    newprobs <- sapply(uniqs, reposition)
    retval[!flag] <- as.character(cut(x[!flag], breaks=newprobs, include.lowest=TRUE,...))

    levs <- unique(retval[order(x)])        # ensure factor levels are
    # properly ordered
    retval <- factor(retval, levels=levs)

    ## determine open/closed interval ends
    mkpairs <- function(x) # make table of lower, upper
      sapply(x,
             function(y) if(length(y)==2) y[c(2,2)] else y[2:3]
      )
    pairs <- mkpairs(strsplit(levs, '[^0-9+\\.\\-]+'))
    rownames(pairs) <- c("lower.bound","upper.bound")
    colnames(pairs) <- levs

    closed.lower <- rep(FALSE, ncol(pairs)) # default lower is open
    closed.upper <- rep(TRUE, ncol(pairs))  # default upper is closed
    closed.lower[1] <- TRUE                 # lowest interval is always closed

    for(i in 2:ncol(pairs))                 # open lower interval if above singlet
      if(pairs[1,i]==pairs[1,i-1] && pairs[1,i]==pairs[2,i-1])
        closed.lower[i] <- FALSE

    for(i in 1:(ncol(pairs)-1))             # open upper interval if below singlet
      if(pairs[2,i]==pairs[1,i+1] && pairs[2,i]==pairs[2,i+1])
        closed.upper[i] <- FALSE

    levs <- ifelse(pairs[1,]==pairs[2,],
                   pairs[1,],
                   paste(ifelse(closed.lower,"[","("),
                         pairs[1,],
                         ",",
                         pairs[2,],
                         ifelse(closed.upper,"]",")"),
                         sep='')
    )
    levels(retval) <- levs

  } else
    retval <- cut( x, breaks, include.lowest=TRUE,  labels=labels, ... )

  return(retval)

}



# Phi-Koeff
Phi  <- function (x, y = NULL, ...) {
  if(!is.null(y)) x <- table(x, y, ...)
  # when computing phi, note that Yates' correction to chi-square must not be used.
  as.numeric( sqrt( suppressWarnings(chisq.test(x, correct=FALSE)$statistic) / sum(x) ) )

  # should we implement: ??
  # following http://technology.msb.edu/old/training/statistics/sas/books/stat/chap26/sect19.htm#idxfrq0371
  # (Liebetrau 1983)
  # this makes phi -1 < phi < 1 for 2x2 tables  (same for CramerV)
  # (prod(diag(x)) - prod(diag(Rev(x, 2)))) / sqrt(prod(colSums(x), rowSums(x)))

}



# Kontingenz-Koeffizient
ContCoef <- function(x, y = NULL, correct = FALSE, ...) {
  if(!is.null(y)) x <- table(x, y, ...)
  chisq <- suppressWarnings(chisq.test(x, correct = FALSE)$statistic)
  cc <- as.numeric( sqrt( chisq / ( chisq + sum(x)) ))
  if(correct) {  # Sakoda's adjusted Pearson's C
    k <- min(nrow(x),ncol(x))
    cc <- cc/sqrt((k-1)/k)
  }
  return(cc)
}



.ncchisqCI <- function(chisq, df, conf) {
  
  alpha <- 1 - conf
  probs <- c(alpha/2, 1 - alpha/2)
  
  ncp <- suppressWarnings(optim(par = 1.1 * rep(chisq, 2), fn = function(x) {
    p <- pchisq(q = chisq, df = df, ncp = x)
    abs(max(p) - probs[2]) + abs(min(p) - probs[1])
  }, control = list(abstol = 0.000000001)))
  
  chisq_ncp <- unname(sort(ncp$par))
  
  return(chisq_ncp)
  
}


CramerV <- function(x, y = NULL, conf.level = NA,
                    method = c("ncchisq", "ncchisqadj", "fisher", "fisheradj"), 
                    correct=FALSE, ...){

  if(!is.null(y)) x <- table(x, y, ...)

  # CIs and power for the noncentral chi-sq noncentrality parameter (ncp):
  # The function lochi computes the lower CI limit and hichi computes the upper limit.
  # Both functions take 3 arguments: observed chi-sq, df, and confidence level.

  # author:   Michael Smithson
  # http://psychology3.anu.edu.au/people/smithson/details/CIstuff/Splusnonc.pdf

  # see also: MBESS::conf.limits.nc.chisq, Ken Kelly


  lochi <- function(chival, df, conf) {
    
    # we don't have lochi for chival==0 
    # optimize would report minval = maxval
    if(chival==0) return(NA)
    
    ulim <- 1 - (1-conf)/2
    #  This first part finds a lower value from which to start.
    lc <- c(.001, chival/2, chival)
    while(pchisq(chival, df, lc[1]) < ulim) {
      if(pchisq(chival, df) < ulim)
        return(c(0, pchisq(chival, df)))
      lc <- c(lc[1]/4, lc[1], lc[3])
    }
    #	This next part finds the lower limit for the ncp.
    diff <- 1
    while(diff > .00001) {
      if(pchisq(chival, df, lc[2]) < ulim)
        lc <- c(lc[1],(lc[1]+lc[2])/2, lc[2])
      else lc <- c(lc[2], (lc[2]+lc[3])/2, lc[3])
      diff <- abs(pchisq(chival, df, lc[2]) - ulim)
      ucdf <- pchisq(chival, df, lc[2])
    }
    c(lc[2], ucdf)
  }

  hichi <- function(chival,df,conf) {
    
    # we don't have hichi for chival==0 
    if(chival==0) return(NA)
    
    #	This first part finds upper and lower startinig values.
    uc <- c(chival, 2*chival, 3*chival)
    llim <- (1-conf)/2
    while(pchisq(chival, df, uc[1]) < llim) {
      uc <- c(uc[1]/4,uc[1],uc[3])
    }
    while(pchisq(chival,df,uc[3])>llim) {
      uc <- c(uc[1],uc[3],uc[3]+chival)
    }
    #	This next part finds the upper limit for the ncp.
    diff <- 1
    while(diff > .00001) {
      if(pchisq(chival, df, uc[2]) < llim)
        uc <- c(uc[1], (uc[1] + uc[2]) / 2, uc[2])
      else uc <- c(uc[2], (uc[2] + uc[3]) / 2, uc[3])
      diff <- abs(pchisq(chival, df, uc[2]) - llim)
      lcdf <- pchisq(chival, df, uc[2])
    }
    c(uc[2], lcdf)
  }

  # Remark Andri 18.12.2014:
  # lochi and hichi could be replaced with:
  #   optimize(function(x) abs(pchisq(chival, DF, x)  - (1-(1-conf.level)/2)), c(0, chival))
  #   optimize(function(x) abs(pchisq(chival, DF, x)  - (1-conf.level)/2), c(0, 3*chival))
  #
  # ... which would run ~ 25% faster and be more exact

  
  
  # what can go wrong while calculating chisq.stat?
  # we don't need test results here, so we suppress those warnings
  chisq.hat <- suppressWarnings(chisq.test(x, correct = FALSE)$statistic)
  df <- prod(dim(x)-1)
  n <- sum(x)
  
  if(correct){
  
    # Bergsma, W, A bias-correction for Cramer's V and Tschuprow's T
    # September 2013Journal of the Korean Statistical Society 42(3)
    # DOI: 10.1016/j.jkss.2012.10.002
    phi.hat <- chisq.hat / n
    v <- as.numeric(sqrt(max(0, phi.hat - df/(n-1)) / 
           (min(sapply(dim(x), function(i) i - 1 / (n-1) * (i-1)^2) - 1))))

  } else {
    v <- as.numeric(sqrt(chisq.hat/(n * (min(dim(x)) - 1))))
  }
  
  
  if (is.na(conf.level)) {
    res <- v

  } else {

    switch(match.arg(method),
      ncchisq={
            ci <- c(lochi(chisq.hat, df, conf.level)[1], hichi(chisq.hat, df, conf.level)[1])
            # corrected by michael smithson, 17.5.2014:
            #    ci <- unname(sqrt( (ci + df) / (sum(x) * (min(dim(x)) - 1)) ))
            ci <- unname(sqrt( (ci) / (n * (min(dim(x)) - 1)) ))
            },

      ncchisqadj={
        ci <- c(lochi(chisq.hat, df, conf.level)[1] + df, hichi(chisq.hat, df, conf.level)[1] + df)
        # corrected by michael smithson, 17.5.2014:
        #    ci <- unname(sqrt( (ci + df) / (sum(x) * (min(dim(x)) - 1)) ))
        ci <- unname(sqrt( (ci) / (n * (min(dim(x)) - 1)) ))
      },

      fisher={
              se <- 1 / sqrt(n-3) * qnorm(1-(1-conf.level)/2)
              ci <- tanh(atanh(v) + c(-se, se))
            },

      fisheradj={
                se <- 1 / sqrt(n-3) * qnorm(1-(1-conf.level)/2)
                # bias correction
                adj <- 0.5 * v / (n-1)
                ci <- tanh(atanh(v) + c(-se, se) + adj)

      })

    #    "Cram\u00E9r's association coefficient"
    res <- c("Cramer V"=v, lwr.ci=max(0, ci[1]), upr.ci=min(1, ci[2]))

  }

  return(res)
}





YuleQ <- function(x, y = NULL, ...){

  if(!is.null(y)) x <- table(x, y, ...)

  # allow only 2x2 tables
  stopifnot(prod(dim(x)) == 4 || length(x) == 4)

  a <- x[1,1]
  b <- x[1,2]
  c <- x[2,1]
  d <- x[2,2]
  return((a*d- b*c)/(a*d + b*c))  #Yule Q

}


YuleY <- function(x, y = NULL, ...){

  if(!is.null(y)) x <- table(x, y, ...)

  # allow only 2x2 tables
  stopifnot(prod(dim(x)) == 4 || length(x) == 4)

  a <- x[1,1]
  b <- x[1,2]
  c <- x[2,1]
  d <- x[2,2]
  return((sqrt(a*d) - sqrt(b*c))/(sqrt(a*d)+sqrt(b*c))) # YuleY

}


TschuprowT <- function(x, y = NULL, correct = FALSE, ...){

  if(!is.null(y)) x <- table(x, y, ...)

  # Tschuprow, A. A. (1939) Principles of the Mathematical Theory of Correlation; translated by M. Kantorowitsch. W. Hodge & Co.
  # http://en.wikipedia.org/wiki/Tschuprow's_T
  # Hartung S. 451

  # what can go wrong while calculating chisq.stat?
  # we don't need test results here, so we suppress those warnings
  chisq.hat <- suppressWarnings(chisq.test(x, correct = FALSE)$statistic)
  n <- sum(x)
  df <- prod(dim(x)-1)
  
  if(correct) {
    # Bergsma, W, A bias-correction for Cramer's V and Tschuprow's T
    # September 2013Journal of the Korean Statistical Society 42(3)
    # DOI: 10.1016/j.jkss.2012.10.002
    # see also CramerV
    
    phi.hat <- chisq.hat / n
    as.numeric(sqrt(max(0, phi.hat - df/(n-1)) / 
                     (sqrt(prod(sapply(dim(x), function(i) i - 1 / (n-1) * (i-1)^2) - 1)))))
    
  } else {
    as.numeric( sqrt(chisq.hat/(n * sqrt(df))))
  }

}




# based on Kappa from library(vcd)
# author: David Meyer
# see also: kappa in library(psych)

CohenKappa <- function (x, y = NULL, 
                         weights = c("Unweighted", "Equal-Spacing", "Fleiss-Cohen"), 
                         conf.level = NA, ...) {
  
  if (is.character(weights)) 
    weights <- match.arg(weights)
  
  if (!is.null(y)) {
    # we can not ensure a reliable weighted kappa for 2 factors with different levels
    # so refuse trying it... (unweighted is no problem)
    
    if (!identical(weights, "Unweighted")) 
      stop("Vector interface for weighted Kappa is not supported. Provide confusion matrix.")
    
    # x and y must have the same levels in order to build a symmetric confusion matrix
    x <- factor(x)
    y <- factor(y)
    lvl <- unique(c(levels(x), levels(y)))
    x <- factor(x, levels = lvl)
    y <- factor(y, levels = lvl)
    x <- table(x, y, ...)
    
  } else {
    d <- dim(x)
    if (d[1L] != d[2L]) 
      stop("x must be square matrix if provided as confusion matrix")
  }
  
  d <- diag(x)
  n <- sum(x)
  nc <- ncol(x)
  colFreqs <- colSums(x)/n
  rowFreqs <- rowSums(x)/n
  
  kappa <- function(po, pc) {
    (po - pc)/(1 - pc)
  }
  
  std <- function(p, pc, k, W = diag(1, ncol = nc, nrow = nc)) {
    sqrt((sum(p * sweep(sweep(W, 1, W %*% colSums(p) * (1 - k)), 
                        2, W %*% rowSums(p) * (1 - k))^2) - 
            (k - pc * (1 - k))^2) / crossprod(1 - pc)/n)
  }
  
  if(identical(weights, "Unweighted")) {
    po <- sum(d)/n
    pc <- as.vector(crossprod(colFreqs, rowFreqs))
    k <- kappa(po, pc)
    s <- as.vector(std(x/n, pc, k))
    
  } else {  
    
    # some kind of weights defined
    W <- if (is.matrix(weights)) 
      weights
    else if (weights == "Equal-Spacing") 
      1 - abs(outer(1:nc, 1:nc, "-"))/(nc - 1)
    else # weights == "Fleiss-Cohen"
      1 - (abs(outer(1:nc, 1:nc, "-"))/(nc - 1))^2
    
    po <- sum(W * x)/n
    pc <- sum(W * colFreqs %o% rowFreqs)
    k <- kappa(po, pc)
    s <- as.vector(std(x/n, pc, k, W))
  }
  
  if (is.na(conf.level)) {
    res <- k
  } else {
    ci <- k + c(1, -1) * qnorm((1 - conf.level)/2) * s
    res <- c(kappa = k, lwr.ci = ci[1], upr.ci = ci[2])
  }
  
  return(res)
  
}



# KappaTest <- function(x, weights = c("Equal-Spacing", "Fleiss-Cohen"), conf.level = NA) {
# to do, idea is to implement a Kappa test for H0: kappa = 0 as in
# http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.pdf, pp. 1687
#   print( "still to do...." )

# }


KappaM <- function(x, method = c("Fleiss", "Conger", "Light"), conf.level = NA) {

  # ratings <- as.matrix(na.omit(x))
  #
  # ns <- nrow(ratings)
  # nr <- ncol(ratings)
  #
  # # Build table
  # lev <- levels(as.factor(ratings))
  #
  # for (i in 1:ns) {
  #   frow <- factor(ratings[i,],levels=lev)
  #
  #   if (i==1)
  #     ttab <- as.numeric(table(frow))
  #   else
  #     ttab <- rbind(ttab, as.numeric(table(frow)))
  # }
  #
  # ttab <- matrix(ttab, nrow=ns)

  # we have not factors for matrices, but we need factors below...
  if(is.matrix(x))
    x <- as.data.frame(x)
  
  x <- na.omit(x)
  ns <- nrow(x)
  nr <- ncol(x)

  # find all levels in the data (data.frame)
  lev <- levels(factor(unlist(x)))
  # apply the same levels to all variables and switch to integer matrix
  xx <- do.call(cbind, lapply(x, factor, levels=lev))

  ttab <- apply(Abind(lapply(as.data.frame(xx), function(z) Dummy(z, method="full", levels=seq_along(lev))), along = 3),
                c(1,2), sum)

  agreeP <- sum((rowSums(ttab^2)-nr)/(nr*(nr-1))/ns)

  switch( match.arg(method, choices= c("Fleiss", "Conger", "Light"))
          , "Fleiss" = {
            chanceP <- sum(colSums(ttab)^2)/(ns*nr)^2
            value <- (agreeP - chanceP)/(1 - chanceP)

            pj <- colSums(ttab)/(ns*nr)
            qj <- 1-pj

            varkappa <- (2/(sum(pj*qj)^2*(ns*nr*(nr-1))))*(sum(pj*qj)^2-sum(pj*qj*(qj-pj)))
            SEkappa <- sqrt(varkappa)

            ci <- value + c(1,-1) * qnorm((1-conf.level)/2) * SEkappa
          }
          , "Conger" = {
            # for (i in 1:nr) {
            #   rcol <- factor(x[,i],levels=lev)
            #
            #   if (i==1)
            #     rtab <- as.numeric(table(rcol))
            #   else
            #     rtab <- rbind(rtab, as.numeric(table(rcol)))
            # }

            rtab <- apply(Abind(lapply(as.data.frame(t(xx)), function(z) Dummy(z, method="full", levels=seq_along(lev))), along = 3),
                          c(1,2), sum)

            rtab <- rtab/ns

            chanceP <- sum(colSums(ttab)^2)/(ns*nr)^2 - sum(apply(rtab, 2, var)*(nr-1)/nr)/(nr-1)
            value <- (agreeP - chanceP)/(1 - chanceP)

            # we have not SE for exact Kappa value
            ci <- c(NA, NA)

          }
          , "Light" = {
            m <- DescTools::PairApply(x, DescTools::CohenKappa, symmetric=TRUE)
            value <- mean(m[upper.tri(m)])

            levlen <- length(lev)
            for (nri in 1:(nr - 1)) for (nrj in (nri + 1):nr) {
              for (i in 1:levlen) for (j in 1:levlen) {
                if (i != j) {
                  r1i <- sum(x[, nri] == lev[i])
                  r2j <- sum(x[, nrj] == lev[j])
                  if (!exists("dis"))
                    dis <- r1i * r2j
                  else dis <- c(dis, r1i * r2j)
                }
              }
              if (!exists("disrater"))
                disrater <- sum(dis)
              else disrater <- c(disrater, sum(dis))
              rm(dis)
            }
            B <- length(disrater) * prod(disrater)
            chanceP <- 1 - B/ns^(choose(nr, 2) * 2)
            varkappa <- chanceP/(ns * (1 - chanceP))
            SEkappa <- sqrt(varkappa)

            ci <- value + c(1,-1) * qnorm((1-conf.level)/2) * SEkappa

          }
  )


  if (is.na(conf.level)) {
    res <- value
  } else {
    res <- c("kappa"=value, lwr.ci=ci[1], upr.ci=ci[2])
  }
  return(res)

}



Agree <- function(x, tolerance = 0, na.rm = FALSE) {

  x <- as.matrix(x)
  if(na.rm) x <- na.omit(x)

  if(anyNA(x)) return(NA)

  ns <- nrow(x)
  nr <- ncol(x)

  if (is.numeric(x)) {
    rangetab <- apply(x, 1, max) - apply(x, 1, min)
    coeff <-  sum(rangetab <= tolerance)/ns

  } else {
    rangetab <- as.numeric(sapply(apply(x, 1, table), length))
    coeff <- (sum(rangetab == 1)/ns)
    tolerance <- 0
  }

  rval <- coeff
  attr(rval, c("subjects")) <- ns
  attr(rval, c("raters")) <- nr

  return(rval)

}


# ICC(ratings)
# ICC_(ratings, type="ICC3", conf.level=0.95)
# ICC_(ratings, type="all", conf.level=0.95)

ICC <- function(x, type=c("all", "ICC1","ICC2","ICC3","ICC1k","ICC2k","ICC3k"), conf.level = NA, na.rm = FALSE) {

  ratings <- as.matrix(x)
  if(na.rm) ratings <- na.omit(ratings)

  ns <- nrow(ratings)
  nr <- ncol(ratings)

  x.s <- stack(data.frame(ratings))
  x.df <- data.frame(x.s, subs = rep(paste("S", 1:ns, sep = ""), nr))

  s.aov <- summary(aov(values ~ subs + ind, data=x.df))
  stats <- matrix(unlist(s.aov), ncol=3, byrow=TRUE)
  MSB <- stats[3,1]
  MSW <- (stats[2,2] + stats[2,3])/(stats[1,2] + stats[1,3])
  MSJ <- stats[3,2]
  MSE <- stats[3,3]

  ICC1 <- (MSB- MSW)/(MSB+ (nr-1)*MSW)
  ICC2 <- (MSB- MSE)/(MSB + (nr-1)*MSE + nr*(MSJ-MSE)/ns)
  ICC3 <- (MSB - MSE)/(MSB+ (nr-1)*MSE)
  ICC12 <- (MSB-MSW)/(MSB)
  ICC22 <- (MSB- MSE)/(MSB +(MSJ-MSE)/ns)
  ICC32 <- (MSB-MSE)/MSB

  #find the various F values from Shrout and Fleiss
  F11 <- MSB/MSW
  df11n <- ns-1
  df11d <- ns*(nr-1)
  p11 <- 1 - pf(F11, df11n, df11d)
  F21 <- MSB/MSE
  df21n <- ns-1
  df21d <- (ns-1)*(nr-1)
  p21 <- 1-pf(F21, df21n, df21d)
  F31 <- F21


  # results <- t(results)

  results <- data.frame(matrix(NA, ncol=8, nrow=6))
  colnames(results ) <- c("type", "est","F-val","df1","df2","p-val","lwr.ci","upr.ci")
  rownames(results) <- c("Single_raters_absolute","Single_random_raters","Single_fixed_raters", "Average_raters_absolute","Average_random_raters","Average_fixed_raters")

  results[,1] = c("ICC1","ICC2","ICC3","ICC1k","ICC2k","ICC3k")
  results[,2] = c(ICC1, ICC2, ICC3, ICC12, ICC22, ICC32)
  results[1,3] <- results[4,3] <- F11
  results[2,3] <- F21
  results[3,3] <- results[6,3] <- results[5,3] <- F31 <- F21
  results[5,3] <- F21
  results[1,4] <- results[4,4] <- df11n
  results[1,5] <- results[4,5] <- df11d
  results[1,6] <- results[4,6] <- p11
  results[2,4] <- results[3,4] <- results[5,4] <- results[6,4] <- df21n
  results[2,5] <- results[3,5] <- results[5,5] <- results[6,5] <- df21d
  results[2,6] <- results[5,6] <- results[3,6] <- results[6,6] <- p21

  #now find confidence limits
  #first, the easy ones
  alpha <- 1 - conf.level
  F1L <- F11 / qf(1-alpha/2, df11n, df11d)
  F1U <- F11 * qf(1-alpha/2, df11d, df11n)
  L1 <- (F1L-1) / (F1L + (nr - 1))
  U1 <- (F1U -1) / (F1U + nr - 1)
  F3L <- F31 / qf(1-alpha/2, df21n, df21d)
  F3U <- F31 * qf(1-alpha/2, df21d, df21n)
  results[1,7] <- L1
  results[1,8] <- U1
  results[3,7] <- (F3L-1)/(F3L+nr-1)
  results[3,8] <- (F3U-1)/(F3U+nr-1)
  results[4,7] <- 1- 1/F1L
  results[4,8] <- 1- 1/F1U
  results[6,7] <- 1- 1/F3L
  results[6,8] <- 1 - 1/F3U

  #the hard one is case 2
  Fj <- MSJ/MSE
  vn <- (nr-1)*(ns-1)* ( (nr*ICC2*Fj+ns*(1+(nr-1)*ICC2) - nr*ICC2))^2
  vd <- (ns-1)*nr^2 * ICC2^2 * Fj^2 + (ns *(1 + (nr-1)*ICC2) - nr*ICC2)^2
  v <- vn/vd
  F3U <- qf(1-alpha/2,ns-1,v)
  F3L <- qf(1-alpha/2,v,ns-1)

  L3 <- ns *(MSB- F3U*MSE)/(F3U*(nr * MSJ + (nr*ns-nr-ns) * MSE)+ ns*MSB)
  results[2, 7] <- L3
  U3 <- ns *(F3L * MSB - MSE)/(nr * MSJ + (nr * ns - nr - ns)*MSE + ns * F3L * MSB)
  results[2, 8] <- U3
  L3k <- L3 * nr/(1+ L3*(nr-1))
  U3k <- U3 * nr/(1+ U3*(nr-1))
  results[5, 7] <- L3k
  results[5, 8] <- U3k


  #clean up the output
  results[,2:8] <- results[,2:8]

  type <- match.arg(type, c("all", "ICC1","ICC2","ICC3","ICC1k","ICC2k","ICC3k"))

  switch(type
         , all={res <- list(results=results, summary=s.aov, stats=stats, MSW=MSW, ns=ns, nr=nr)
         class(res) <- "ICC"
         }
         , ICC1={idx <- 1}
         , ICC2={idx <- 2}
         , ICC3={idx <- 3}
         , ICC1k={idx <- 4}
         , ICC2k={idx <- 5}
         , ICC3k={idx <- 6}
  )

  if(type!="all"){
    if(is.na(conf.level)){
      res <- results[idx, c(2)][,]
    } else {
      res <- unlist(results[idx, c(2, 7:8)])
      names(res) <- c(type,"lwr.ci","upr.ci")
    }
  }

  return(res)

}


print.ICC <- function(x, digits = 3, ...){
  cat("\nIntraclass correlation coefficients \n")
  print(x$results, digits=digits)
  cat("\n Number of subjects =", x$ns, "    Number of raters =", x$nr, "\n")
}




# implementing Omega might be wise
# boostrap CI could be integrated in function instead on examples of help

CronbachAlpha <- function(x, conf.level = NA, cond = FALSE, na.rm = FALSE){

  i.CronbachAlpha <- function(x, conf.level = NA){
    nc <- ncol(x)
    colVars <- apply(x, 2, var)
    total   <- var(rowSums(x))
    res <- (total - sum(colVars)) / total * (nc/(nc-1))

    if (!is.na(conf.level)) {
      N <- length(x)
      ci <- 1 - (1-res) * qf( c(1-(1-conf.level)/2, (1-conf.level)/2), N-1, (nc-1)*(N-1))
      res <- c("Cronbach Alpha"=res, lwr.ci=ci[1], upr.ci=ci[2])
    }
    return(res)
  }


  x <- as.matrix(x)
  if(na.rm) x <- na.omit(x)

  res <- i.CronbachAlpha(x = x, conf.level = conf.level)

  if(cond) {
    condCronbachAlpha <- list()
    n <- ncol(x)
    if(n > 2) {     # can't calculate conditional with only 2 items
      for(i in 1:n){
        condCronbachAlpha[[i]] <- i.CronbachAlpha(x[,-i], conf.level = conf.level)
      }
      condCronbachAlpha <- data.frame(Item = 1:n, do.call("rbind", condCronbachAlpha))
      colnames(condCronbachAlpha)[2] <- "Cronbach Alpha"
    }
    res <- list(unconditional=res, condCronbachAlpha = condCronbachAlpha)
  }

  return(res)
}


KendallW <- function(x, correct=FALSE, test=FALSE, na.rm = FALSE) {

  # see also old Jim Lemon function kendall.w
  # other solution: library(irr);  kendall(ratings, correct = TRUE)
  # http://www.real-statistics.com/reliability/kendalls-w/


  dname <- deparse(substitute(x))

  ratings <- as.matrix(x)
  if(na.rm) ratings <- na.omit(ratings)

  ns <- nrow(ratings)
  nr <- ncol(ratings)

  #Without correction for ties
  if (!correct) {
    #Test for ties
    TIES = FALSE
    testties <- apply(ratings, 2, unique)
    if (!is.matrix(testties)) TIES=TRUE
    else { if (length(testties) < length(ratings)) TIES=TRUE }

    ratings.rank <- apply(ratings,2,rank)

    coeff.name <- "W"
    coeff <- (12*var(apply(ratings.rank,1,sum))*(ns-1))/(nr^2*(ns^3-ns))
  }
  else { #With correction for ties
    ratings <- as.matrix(na.omit(ratings))

    ns <- nrow(ratings)
    nr <- ncol(ratings)

    ratings.rank <- apply(ratings,2,rank)

    Tj <- 0
    for (i in 1:nr) {
      rater <- table(ratings.rank[,i])
      ties  <- rater[rater>1]
      l 	  <- as.numeric(ties)
      Tj	  <- Tj + sum(l^3-l)
    }

    coeff.name <- "Wt"
    coeff <- (12*var(apply(ratings.rank,1,sum))*(ns-1))/(nr^2*(ns^3-ns)-nr*Tj)
  }

  if(test){
    #test statistics
    Xvalue  <- nr*(ns-1)*coeff
    df1     <- ns-1
    names(df1) <- "df"
    p.value <- pchisq(Xvalue, df1, lower.tail = FALSE)
    method <- paste("Kendall's coefficient of concordance", coeff.name)
    alternative <- paste(coeff.name, "is greater 0")
    names(ns) <- "subjects"
    names(nr) <- "raters"
    names(Xvalue) <- "Kendall chi-squared"
    names(coeff) <- coeff.name
    rval <- list(#subjects = ns, raters = nr,
      estimate = coeff, parameter=c(df1, ns, nr),
      statistic = Xvalue, p.value = p.value,
      alternative = alternative, method = method, data.name = dname)

    class(rval) <- "htest"
  } else {
    rval <- coeff
  }

  if (!correct && TIES) warning("Coefficient may be incorrect due to ties")
  return(rval)
}



CCC <- function(x, y, ci = "z-transform", conf.level = 0.95, na.rm = FALSE){

  dat <- data.frame(x, y)

  if(na.rm) dat <- na.omit(dat)
  #   id <- complete.cases(dat)
  #   nmissing <- sum(!complete.cases(dat))
  #   dat <- dat[id,]


  N. <- 1 - ((1 - conf.level) / 2)
  zv <- qnorm(N., mean = 0, sd = 1)
  lower <- "lwr.ci"
  upper <- "upr.ci"

  k <- length(dat$y)
  yb <- mean(dat$y)
  sy2 <- var(dat$y) * (k - 1) / k
  sd1 <- sd(dat$y)

  xb <- mean(dat$x)
  sx2 <- var(dat$x) * (k - 1) / k
  sd2 <- sd(dat$x)

  r <- cor(dat$x, dat$y)
  sl <- r * sd1 / sd2

  sxy <- r * sqrt(sx2 * sy2)
  p <- 2 * sxy / (sx2 + sy2 + (yb - xb)^2)

  delta <- (dat$x - dat$y)
  rmean <- apply(dat, MARGIN = 1, FUN = mean)
  blalt <- data.frame(mean = rmean, delta)

  # Scale shift:
  v <- sd1 / sd2
  # Location shift relative to the scale:
  u <- (yb - xb) / ((sx2 * sy2)^0.25)
  # Variable C.b is a bias correction factor that measures how far the best-fit line deviates from a line at 45 degrees (a measure of accuracy). No deviation from the 45 degree line occurs when C.b = 1. See Lin (1989 page 258).
  # C.b <- (((v + 1) / (v + u^2)) / 2)^-1

  # The following taken from the Stata code for function "concord" (changed 290408):
  C.b <- p / r

  # Variance, test, and CI for asymptotic normal approximation (per Lin (March 2000) Biometrics 56:325-5):
  sep = sqrt(((1 - ((r)^2)) * (p)^2 * (1 - ((p)^2)) / (r)^2 + (2 * (p)^3 * (1 - p) * (u)^2 / r) - 0.5 * (p)^4 * (u)^4 / (r)^2 ) / (k - 2))
  ll = p - zv * sep
  ul = p + zv * sep

  # Statistic, variance, test, and CI for inverse hyperbolic tangent transform to improve asymptotic normality:
  t <- log((1 + p) / (1 - p)) / 2
  set = sep / (1 - ((p)^2))
  llt = t - zv * set
  ult = t + zv * set
  llt = (exp(2 * llt) - 1) / (exp(2 * llt) + 1)
  ult = (exp(2 * ult) - 1) / (exp(2 * ult) + 1)

  if(ci == "asymptotic"){
    rho.c <- as.data.frame(cbind(p, ll, ul))
    names(rho.c) <- c("est", lower, upper)
    rval <- list(rho.c = rho.c, s.shift = v, l.shift = u, C.b = C.b, blalt = blalt ) # , nmissing = nmissing)
  }

  else if(ci == "z-transform"){
    rho.c <- as.data.frame(cbind(p, llt, ult))
    names(rho.c) <- c("est", lower, upper)
    rval <- list(rho.c = rho.c, s.shift = v, l.shift = u, C.b = C.b, blalt = blalt) #, nmissing = nmissing)
  }
  return(rval)
}




KrippAlpha <- function (x, method = c("nominal", "ordinal", "interval", "ratio")) {

  method  <-  match.arg(method)

  coincidence.matrix <- function(x) {
    levx <- (levels(as.factor(x)))
    nval <- length(levx)
    cm <- matrix(rep(0, nval * nval), nrow = nval)
    dimx <- dim(x)
    vn <- function(datavec) sum(!is.na(datavec))
    if(any(is.na(x))) mc <- apply(x, 2, vn) - 1
    else mc <- rep(1, dimx[2])
    for(col in 1:dimx[2]) {
      for(i1 in 1:(dimx[1] - 1)) {
        for(i2 in (i1 + 1):dimx[1]) {
          if(!is.na(x[i1, col]) && !is.na(x[i2, col])) {
            index1 <- which(levx == x[i1, col])
            index2 <- which(levx == x[i2, col])
            cm[index1, index2] <- cm[index1,index2] + (1 + (index1 == index2))/mc[col]
            if(index1 != index2) cm[index2,index1] <- cm[index1,index2]
          }
        }
      }
    }
    nmv  <-  sum(apply(cm, 2, sum))
    return(structure(list(method="Krippendorff's alpha",
                          subjects=dimx[2], raters=dimx[1],irr.name="alpha",
                          value=NA,stat.name="nil",statistic=NULL,
                          cm=cm,data.values=levx,nmatchval=nmv,data.level=NA),
                     class = "irrlist"))
  }

  ka <- coincidence.matrix(x)
  ka$data.level <- method
  dimcm <- dim(ka$cm)
  utcm <- as.vector(ka$cm[upper.tri(ka$cm)])
  diagcm <- diag(ka$cm)
  occ <- sum(diagcm)
  nc <- apply(ka$cm,1,sum)
  ncnc <- sum(nc * (nc - 1))
  dv <- as.numeric(ka$data.values)
  diff2 <- rep(0,length(utcm))
  ncnk <- rep(0,length(utcm))
  ck <- 1

  if (dimcm[2]<2)
    ka$value <- 1.0
  else {
    for(k in 2:dimcm[2]) {
      for(c in 1:(k-1)) {
        ncnk[ck] <- nc[c] * nc[k]
        if(match(method[1],"nominal",0)) diff2[ck] <- 1
        if(match(method[1],"ordinal",0)) {
          diff2[ck] <- nc[c]/2
          if(k > (c+1))
            for(g in (c+1):(k-1)) diff2[ck] <- diff2[ck] + nc[g]
            diff2[ck] <- diff2[ck]+nc[k]/2
            diff2[ck] <- diff2[ck]^2
        }
        if(match(method[1],"interval",0)) diff2[ck] <- (dv[c]-dv[k])^2
        if(match(method[1],"ratio",0)) diff2[ck] <- (dv[c]-dv[k])^2/(dv[c]+dv[k])^2
        ck <- ck+1
      }
    }
    ka$value <- 1-(ka$nmatchval-1)*sum(utcm*diff2)/sum(ncnk*diff2)
  }
  return(ka)
}



Entropy <- function(x, y = NULL, base = 2, ...) {

  # x is either a table or a vector if y is defined

  if(!is.null(y)) { x <- table(x, y, ...) }
  x <- as.matrix(x)

  ptab <- x / sum(x)
  H <- - sum( ifelse(ptab > 0, ptab * log(ptab, base=base), 0) )
  return(H)

}


MutInf <- function(x, y = NULL, base = 2, ...){
  # ### Ref.:  http://en.wikipedia.org/wiki/Cluster_labeling

  if(!is.null(y)) { x <- table(x, y, ...) }
  x <- as.matrix(x)

  return(
    Entropy(rowSums(x), base=base) +
      Entropy(colSums(x), base=base) - Entropy(x, base=base)
  )

}



# Rao's Diversity from ade4 divc
# author:

DivCoef <- function(df, dis = NULL, scale = FALSE){
  # checking of user's data and initialization.
  if (!inherits(df, "data.frame")) stop("Non convenient df")
  if (any(df < 0)) stop("Negative value in df")
  if (!is.null(dis)) {
    if (!inherits(dis, "dist")) stop("Object of class 'dist' expected for distance")
    if (!IsEuclid(dis)) warning("Euclidean property is expected for distance")
    dis <- as.matrix(dis)
    if (nrow(df)!= nrow(dis)) stop("Non convenient df")
    dis <- as.dist(dis)
  }
  if (is.null(dis)) dis <- as.dist((matrix(1, nrow(df), nrow(df))
                                    - diag(rep(1, nrow(df)))) * sqrt(2))
  div <- as.data.frame(rep(0, ncol(df)))
  names(div) <- "diversity"
  rownames(div) <- names(df)
  for (i in 1:ncol(df)) {
    if(sum(df[, i]) < 1e-16) div[i, ] <- 0
    else div[i, ] <- (t(df[, i]) %*% (as.matrix(dis)^2) %*% df[, i]) / 2 / (sum(df[, i])^2)
  }
  if(scale == TRUE){
    divmax <- DivCoefMax(dis)$value
    div <- div / divmax
  }
  return(div)
}

IsEuclid <- function (distmat, plot = FALSE, print = FALSE, tol = 1e-07) {

  "bicenter.wt" <- function (X, row.wt = rep(1, nrow(X)), col.wt = rep(1, ncol(X))) {
    X <- as.matrix(X)
    n <- nrow(X)
    p <- ncol(X)
    if (length(row.wt) != n)
      stop("length of row.wt must equal the number of rows in x")
    if (any(row.wt < 0) || (sr <- sum(row.wt)) == 0)
      stop("weights must be non-negative and not all zero")
    row.wt <- row.wt/sr
    if (length(col.wt) != p)
      stop("length of col.wt must equal the number of columns in x")
    if (any(col.wt < 0) || (st <- sum(col.wt)) == 0)
      stop("weights must be non-negative and not all zero")
    col.wt <- col.wt/st
    row.mean <- apply(row.wt * X, 2, sum)
    col.mean <- apply(col.wt * t(X), 2, sum)
    col.mean <- col.mean - sum(row.mean * col.wt)
    X <- sweep(X, 2, row.mean)
    X <- t(sweep(t(X), 2, col.mean))
    return(X)
  }

  if (!inherits(distmat, "dist"))
    stop("Object of class 'dist' expected")
  if(any(distmat<tol))
    warning("Zero distance(s)")
  distmat <- as.matrix(distmat)
  n <- ncol(distmat)
  delta <- -0.5 * bicenter.wt(distmat * distmat)
  lambda <- eigen(delta, symmetric = TRUE, only.values = TRUE)$values
  w0 <- lambda[n]/lambda[1]
  if (plot)
    barplot(lambda)
  if (print)
    print(lambda)
  return((w0 > -tol))
}


DivCoefMax <- function(dis, epsilon = 1e-008, comment = FALSE) {

  # inititalisation
  if(!inherits(dis, "dist")) stop("Distance matrix expected")
  if(epsilon <= 0) stop("epsilon must be positive")
  if(!IsEuclid(dis)) stop("Euclidean property is expected for dis")
  D2 <- as.matrix(dis)^2 / 2
  n <- dim(D2)[1]
  result <- data.frame(matrix(0, n, 4))
  names(result) <- c("sim", "pro", "met", "num")
  relax <- 0    # determination de la valeur initiale x0
  x0 <- apply(D2, 1, sum) / sum(D2)
  result$sim <- x0    # ponderation simple
  objective0 <- t(x0) %*% D2 %*% x0
  if (comment == TRUE)
    print("evolution of the objective function:")
  xk <- x0    # grande boucle de test des conditions de Kuhn-Tucker
  repeat {
    # boucle de test de nullite du gradient projete
    repeat {
      maxi.temp <- t(xk) %*% D2 %*% xk
      if(comment == TRUE) print(as.character(maxi.temp))
      #calcul du gradient
      deltaf <- (-2 * D2 %*% xk)
      # determination des contraintes saturees
      sature <- (abs(xk) < epsilon)
      if(relax != 0) {
        sature[relax] <- FALSE
        relax <- 0
      }
      # construction du gradient projete
      yk <- ( - deltaf)
      yk[sature] <- 0
      yk[!(sature)] <- yk[!(sature)] - mean(yk[!(
        sature)])
      # test de la nullite du gradient projete
      if (max(abs(yk)) < epsilon) {
        break
      }
      # determination du pas le plus grand compatible avec les contraintes
      alpha.max <- as.vector(min( - xk[yk < 0] / yk[yk <
                                                      0]))
      alpha.opt <- as.vector( - (t(xk) %*% D2 %*% yk) / (
        t(yk) %*% D2 %*% yk))
      if ((alpha.opt > alpha.max) | (alpha.opt < 0)) {
        alpha <- alpha.max
      }
      else {
        alpha <- alpha.opt
      }
      if (abs(maxi.temp - t(xk + alpha * yk) %*% D2 %*% (
        xk + alpha * yk)) < epsilon) {
        break
      }
      xk <- xk + alpha * yk
    }
    # verification des conditions de KT
    if (prod(!sature) == 1) {
      if (comment == TRUE)
        print("KT")
      break
    }
    vectD2 <- D2 %*% xk
    u <- 2 * (mean(vectD2[!sature]) - vectD2[sature])
    if (min(u) >= 0) {
      if (comment == TRUE)
        print("KT")
      break
    }
    else {
      if (comment == TRUE)
        print("relaxation")
      satu <- (1:n)[sature]
      relax <- satu[u == min(u)]
      relax <-relax[1]
    }
  }
  if (comment == TRUE)
    print(list(objective.init = objective0, objective.final
               = maxi.temp))
  result$num <- as.vector(xk, mode = "numeric")
  result$num[result$num < epsilon] <- 0
  # ponderation numerique
  xk <- x0 / sqrt(sum(x0 * x0))
  repeat {
    yk <- D2 %*% xk
    yk <- yk / sqrt(sum(yk * yk))
    if (max(xk - yk) > epsilon) {
      xk <- yk
    }
    else break
  }
  x0 <- as.vector(yk, mode = "numeric")
  result$pro <- x0 / sum(x0)    # ponderation propre
  result$met <- x0 * x0    # ponderation propre
  restot <- list()
  restot$value <- DivCoef(cbind.data.frame(result$num), dis)[,1]
  restot$vectors <- result
  return(restot)
}





# http://sph.bu.edu/otlt/MPH-Modules/BS/BS704_Confidence_Intervals/BS704_Confidence_Intervals8.html
# sas:    http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/viewer.htm#statug_surveyfreq_a0000000227.htm

# discussion:   http://tolstoy.newcastle.edu.au/R/e2/help/06/11/4982.html
#
# RelRisk0 <- function(x, conf.level = NA) {
#
#   rr <- (x[1,1]/sum(x[,1])) / (x[1,2]/sum(x[,2]))
#   if (is.na(conf.level)) {
#     res <- rr
#   } else {
#     sigma <- x[1,2]/(x[1,1]*sum(x[1,])) + x[2,2]/(x[2,1]*sum(x[2,]))
#     qn <- qnorm(1-(1-conf.level)/2)
#     ci <- exp(log(rr) + c(-1,1)*qn*sqrt(sigma))
#     res <- c("rel. risk"=rr, lwr.ci=ci[1], upr.ci=ci[2])
#   }
#   return(res)
# }


RelRisk <- function(x, y = NULL, conf.level = NA, method = c("score", "wald", "use.or"), delta = 0.5, ...) {

  if(!is.null(y)) x <- table(x, y, ...)

  p <- (d <- dim(x))[1L]
  if(!is.numeric(x) || length(d) != 2L || p != d[2L] || p !=2L)
    stop("'x' is not a 2x2 numeric matrix")

  x1 <- x[1,1]
  x2 <- x[2,1]
  n1 <- x[1,1] + x[1,2]
  n2 <- x[2,1] + x[2,2]

  rr <- (x[1,1]/sum(x[1,])) / (x[2,1]/sum(x[2,]))

  if( !is.na(conf.level)) {
    switch( match.arg( arg = method, choices = c("score", "wald", "use.or") )
            , "score" = {
              # source:
              # Agresti-Code:        http://www.stat.ufl.edu/~aa/cda/R/two-sample/R2/

              # R Code for large-sample score confidence interval for a relative risk
              # in a 2x2 table (Koopman 1984, Miettinen and Nurminen 1985, Nurminen 1986).

              z =  abs(qnorm((1-conf.level)/2))
              if ((x2==0) &&(x1==0)){
                ul = Inf
                ll = 0
              }
              else{
                a1 =  n2*(n2*(n2+n1)*x1+n1*(n2+x1)*(z^2))
                a2 = -n2*(n2*n1*(x2+x1)+2*(n2+n1)*x2*x1+n1*(n2+x2+2*x1)*(z^2))
                a3 = 2*n2*n1*x2*(x2+x1)+(n2+n1)*(x2^2)*x1+n2*n1*(x2+x1)*(z^2)
                a4 = -n1*(x2^2)*(x2+x1)
                b1 = a2/a1
                b2 = a3/a1
                b3 = a4/a1
                c1 = b2-(b1^2)/3
                c2 = b3-b1*b2/3+2*(b1^3)/27
                ceta = acos(sqrt(27)*c2/(2*c1*sqrt(-c1)))
                t1 = -2*sqrt(-c1/3)*cos(pi/3-ceta/3)
                t2 = -2*sqrt(-c1/3)*cos(pi/3+ceta/3)
                t3 = 2*sqrt(-c1/3)*cos(ceta/3)
                p01 = t1-b1/3
                p02 = t2-b1/3
                p03 = t3-b1/3
                p0sum = p01+p02+p03
                p0up = min(p01,p02,p03)
                p0low = p0sum-p0up-max(p01,p02,p03)

                if( (x2==0) && (x1!=0) ){
                  ll = (1-(n1-x1)*(1-p0low)/(x2+n1-(n2+n1)*p0low))/p0low
                  ul = Inf
                }
                else if( (x2!=n2) && (x1==0)){
                  ul = (1-(n1-x1)*(1-p0up)/(x2+n1-(n2+n1)*p0up))/p0up
                  ll = 0
                }
                else if( (x2==n2) && (x1==n1)){
                  ul = (n2+z^2)/n2
                  ll =  n1/(n1+z^2)
                }
                else if( (x1==n1) || (x2==n2) ){
                  if((x2==n2) && (x1==0)) { ll = 0 }
                  if((x2==n2) && (x1!=0)) {
                    phat1  = x2/n2
                    phat2  =  x1/n1
                    phihat = phat2/phat1
                    phil = 0.95*phihat
                    chi2 = 0
                    while (chi2 <= z){
                      a = (n2+n1)*phil
                      b = -((x2+n1)*phil+x1+n2)
                      c = x2+x1
                      p1hat = (-b-sqrt(b^2-4*a*c))/(2*a)
                      p2hat = p1hat*phil
                      q2hat = 1-p2hat
                      var = (n2*n1*p2hat)/(n1*(phil-p2hat)+n2*q2hat)
                      chi2 = ((x1-n1*p2hat)/q2hat)/sqrt(var)
                      ll = phil
                      phil = ll/1.0001}}
                  i = x2
                  j = x1
                  ni = n2
                  nj = n1
                  if( x1==n1 ){
                    i = x1
                    j = x2
                    ni = n1
                    nj = n2
                  }
                  phat1  = i/ni
                  phat2  =  j/nj
                  phihat = phat2/phat1
                  phiu = 1.1*phihat
                  if((x2==n2) && (x1==0)) {
                    if(n2<100) {phiu = .01}
                    else {phiu=0.001}
                  }
                  chi1 = 0
                  while (chi1 >= -z){
                    a = (ni+nj)*phiu
                    b = -((i+nj)*phiu+j+ni)
                    c = i+j
                    p1hat = (-b-sqrt(b^2-4*a*c))/(2*a)
                    p2hat = p1hat*phiu
                    q2hat = 1-p2hat
                    var = (ni*nj*p2hat)/(nj*(phiu-p2hat)+ni*q2hat)
                    chi1  = ((j-nj*p2hat)/q2hat)/sqrt(var)
                    phiu1 = phiu
                    phiu = 1.0001*phiu1
                  }

                  if(x1==n1) {
                    ul = (1-(n1-x1)*(1-p0up)/(x2+n1-(n2+n1)*p0up))/p0up
                    ll = 1/phiu1
                  }
                  else{ ul = phiu1}
                }

                else{
                  ul = (1-(n1-x1)*(1-p0up)/(x2+n1-(n2+n1)*p0up))/p0up
                  ll = (1-(n1-x1)*(1-p0low)/(x2+n1-(n2+n1)*p0low))/p0low
                }
              }
            }
            , "wald" = {
              # based on code by Michael Dewey, 2006

              x1.d <- x1 + delta
              x2.d <- x2 + delta
              lrr <- log(rr)
              se.lrr <- sqrt(1/x1.d - 1/n1 + 1/x2.d - 1/n2)
              mult <- abs(qnorm((1-conf.level)/2))
              ll <- exp(lrr - mult * se.lrr)
              ul <- exp(lrr + mult * se.lrr)
            }
            , "use.or" = {
              or <- OddsRatio(x, conf.level=conf.level)
              p2 <- x2/n2
              rr.ci <- or/((1-p2) + p2 * or)
              ll <- unname(rr.ci[2])
              ul <- unname(rr.ci[3])
            }
    )
  }

  if (is.na(conf.level)) {
    res <- rr
  } else {
    res <- c("rel. risk"=rr, lwr.ci=ll, upr.ci=ul)
  }
  return(res)

}



OddsRatio <- function (x, conf.level = NULL, ...) {
  UseMethod("OddsRatio")
}



OddsRatio.glm <- function(x, conf.level = NULL, digits=3, use.profile=FALSE, ...) {

  if(is.null(conf.level)) conf.level <- 0.95

  # Fasst die Ergebnisse eines binomialen GLMs als OR summary zusammen

  d.res <- data.frame(summary(x)$coefficients)
  names(d.res)[c(2,4)] <- c("Std. Error","Pr(>|z|)")

  d.res$or <- exp(d.res$Estimate)
  # ci or
  d.res$"or.lci" <- exp(d.res$Estimate + qnorm(0.025)*d.res$"Std. Error" )
  d.res$"or.uci" <- exp(d.res$Estimate + qnorm(0.975)*d.res$"Std. Error" )


  if(use.profile)
    ci <- exp(confint(x, level = conf.level))
  else
    ci <- exp(confint.default(x, level = conf.level))

  # exclude na coefficients here, as summary does not yield those
  d.res[, c("or.lci","or.uci")] <- ci[!is.na(coefficients(x)), ]
  
  d.res$sig <- Format(d.res$"Pr(>|z|)", fmt="*")
  d.res$pval <- Format(d.res$"Pr(>|z|)", fmt="p")

  # d.res["(Intercept)",c("or","or.lci","or.uci")] <- NA
  # d.res["(Intercept)","Pr(>|z|)"] <- "NA"
  # d.res["(Intercept)"," "] <- ""

  d.print <- data.frame(lapply(d.res[, 5:7], Format, digits=digits),
                        pval=d.res$pval, sig=d.res$sig, stringsAsFactors = FALSE)
  rownames(d.print) <- rownames(d.res)
  colnames(d.print)[4:5] <- c("Pr(>|z|)","")

  
  mterms <- {
    res <- lapply(labels(terms(x)), function(y) 
      colnames(model.matrix(formula(gettextf("~ 0 + %s", y)), data=model.frame(x))))
    names(res) <- labels(terms(x))
    res
  } 
  
  
  res <- list(or=d.print, call=x$call,
              BrierScore=BrierScore(x), PseudoR2=PseudoR2(x, which="all"), res=d.res,
              nobs=nobs(x), terms=mterms, model=x$model)

  class(res) <- "OddsRatio"

  return(res)

}


OddsRatio.multinom <- function(x, conf.level=NULL, digits=3, ...) {

  if(is.null(conf.level)) conf.level <- 0.95

  # class(x) <- class(x)[class(x)!="regr"]
  r.summary <- summary(x, Wald.ratios = TRUE)

  coe <- t(r.summary$coefficients)
  coe <- reshape(data.frame(coe, id=row.names(coe)), varying=1:ncol(coe), idvar="id"
                 , times=colnames(coe), v.names="or", direction="long")

  se <- t(r.summary$standard.errors)
  se <- reshape(data.frame(se), varying=1:ncol(se),
                times=colnames(se), v.names="se", direction="long")[, "se"]

  # d.res <- r.summary
  d.res <- data.frame(
    "or"= exp(coe[, "or"]),
    "or.lci" = exp(coe[, "or"] + qnorm(0.025) * se),
    "or.uci" = exp(coe[, "or"] - qnorm(0.025) * se),
    "pval" = 2*(1-pnorm(q = abs(coe[, "or"]/se), mean=0, sd=1)),
    "sig" = 2*(1-pnorm(q = abs(coe[, "or"]/se), mean=0, sd=1))
  )
  
  d.print <- data.frame(
    "or"= Format(exp(coe[, "or"]), digits=digits),
    "or.lci" = Format(exp(coe[, "or"] + qnorm(0.025) * se), digits=digits),
    "or.uci" = Format(exp(coe[, "or"] - qnorm(0.025) * se), digits=digits),
    "pval" = Format(2*(1-pnorm(q = abs(coe[, "or"]/se), mean=0, sd=1)), fmt="p", digits=3),
    "sig" = Format(2*(1-pnorm(q = abs(coe[, "or"]/se), mean=0, sd=1)), fmt="*"),
    stringsAsFactors = FALSE
  )

  colnames(d.print)[4:5] <- c("Pr(>|z|)","")
  rownames(d.print) <- paste(coe$time, coe$id, sep=":")
  
  rownames(d.res) <- rownames(d.print)

  res <- list(or = d.print, call = x$call,
              BrierScore = NA, # BrierScore(x),
              PseudoR2 = PseudoR2(x, which="all"), res=d.res)

  class(res) <- "OddsRatio"
  return(res)

}



OddsRatio.zeroinfl <- function (x, conf.level = NULL, digits = 3, ...) {

  if(is.null(conf.level)) conf.level <- 0.95

  d.res <- data.frame(summary(x)$coefficients$zero)
  names(d.res)[c(2, 4)] <- c("Std. Error", "Pr(>|z|)")

  d.res$or <- exp(d.res$Estimate)
  d.res$or.lci <- exp(d.res$Estimate + qnorm(0.025) * d.res$"Std. Error")
  d.res$or.uci <- exp(d.res$Estimate + qnorm(0.975) * d.res$"Std. Error")
  d.res["(Intercept)", c("or", "or.lci", "or.uci")] <- NA
  d.res$sig <- format(as.character(cut(d.res$"Pr(>|z|)", breaks = c(0,
                                                                    0.001, 0.01, 0.05, 0.1, 1), include.lowest = TRUE, labels = c("***",
                                                                                                                                  "**", "*", ".", " "))), justify = "left")
  d.res$"Pr(>|z|)" <- Format(d.res$"Pr(>|z|)", fmt="p")
  d.res["(Intercept)", "Pr(>|z|)"] <- "NA"
  d.res["(Intercept)", " "] <- ""
  d.print <- data.frame(lapply(d.res[, 5:7], Format, digits=digits),
                        p.value = d.res[,4], sig = d.res[, 8], stringsAsFactors = FALSE)

  rownames(d.print) <- rownames(d.res)
  res <- list(or = d.print, call = x$call,
              BrierScore = BrierScore(resp=(model.response(model.frame(x)) > 0) * 1L,
                                      pred=predict(x, type="zero")),
              PseudoR2 = PseudoR2(x, which="all"), res=d.res)

  class(res) <- "OddsRatio"

  return(res)
}


print.OddsRatio <- function(x, ...){

    cat("\nCall:\n")
    print(x$call)

    cat("\nOdds Ratios:\n")
    print(x$or)
    cat("---\nSignif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 \n\n")

    if(!is.null(x$BrierScore)){
      cat(gettextf("Brier Score: %s     Nagelkerke R2: %s\n\n",
                   round(x$BrierScore,3), round(x$PseudoR2["Nagelkerke"],3)))
    }

}



plot.OddsRatio <- function(x, intercept=FALSE, group=NULL, subset = NULL, ...){

  if(!intercept)
    # x$res <- x$res[rownames(x$res)!="(Intercept)", ]
    x$res <- x$res[!grepl("(Intercept)", rownames(x$res)), ]
  
  args <- list(...)

  # here the defaults
  args.errbars1 <- list(from=cbind(x$res$or, x$res$or.lci, x$res$or.uci))

  # overwrite with userdefined values
  if (!is.null(args[["args.errbars"]])) {
    args.errbars1[names(args[["args.errbars"]])] <- args[["args.errbars"]][]
    args[["args.errbars"]] <- NULL
  }

  # here the defaults for PlotDot
  args.plotdot1 <- list(x=x$res$or, args.errbars=args.errbars1, labels=rownames(x$res),
                        panel.first=quote(abline(v=1, col="grey")))

  if (!is.null(args)) {
    args.plotdot1[names(args)] <- args
  }

  do.call(PlotDot, args=args.plotdot1)

}




OddsRatio.default <- function(x, conf.level = NULL, y = NULL, method=c("wald", "mle", "midp")
                      , interval = c(0, 1000), ...) {

  if(!is.null(y)) x <- table(x, y, ...)

  if(is.null(conf.level)) conf.level <- NA

  p <- (d <- dim(x))[1L]
  if(!is.numeric(x) || length(d) != 2L || p != d[2L] || p != 2L)
    stop("'x' is not a 2x2 numeric matrix")

  switch( match.arg( arg = method, choices = c("wald", "mle", "midp") )
          , "wald" = {
            if (any(x == 0)) x <- x + 0.5
            lx <- log(x)
            or <- exp(lx[1, 1] + lx[2, 2] - lx[1, 2] - lx[2, 1])

            if(is.na(conf.level)){
              res <- or
            } else {
              # Agresti Categorical Data Analysis, 3.1.1
              sigma2lor <- sum(1/x)
              ci <- or * exp(c(1,-1) * qnorm((1-conf.level)/2) * sqrt(sigma2lor))
              res <- c("odds ratio"=or, lwr.ci=ci[1], upr.ci=ci[2])
            }
          }
          , "mle" = {
            if(is.na(conf.level)){
              res <- unname(fisher.test(x, conf.int=FALSE)$estimate)
            } else {
              res <- fisher.test(x, conf.level=conf.level)
              res <- c(res$estimate, lwr.ci=res$conf.int[1], upr.ci=res$conf.int[2])
            }
          }
          , "midp" = {

            # based on code from Tomas J. Aragon Developer <aragon at berkeley.edu>

            a1 <- x[1,1]; a0 <- x[1,2]; b1 <- x[2,1]; b0 <- x[2,2]; or <- 1

            # median-unbiased estimate function
            mue <- function(a1, a0, b1, b0, or){
              mm <- matrix(c(a1,a0,b1,b0), 2, 2, byrow=TRUE)
              fisher.test(mm, or=or, alternative="l")$p-fisher.test(x=x, or=or, alternative="g")$p
            }
            ##mid-p function
            midp <- function(a1, a0, b1, b0, or = 1){
              mm <- matrix(c(a1,a0,b1,b0),2,2, byrow=TRUE)
              lteqtoa1 <- fisher.test(mm,or=or,alternative="l")$p.val
              gteqtoa1 <- fisher.test(mm,or=or,alternative="g")$p.val
              0.5*(lteqtoa1-gteqtoa1+1)
            }

            # root finding
            EST <- uniroot(
              function(or){ mue(a1, a0, b1, b0, or)},
              interval = interval)$root

            if(is.na(conf.level)){
              res <- EST
            } else {

              alpha <- 1 - conf.level
              LCL <- uniroot(function(or){
                1-midp(a1, a0, b1, b0, or)-alpha/2
              },  interval = interval)$root
              UCL <- 1/uniroot(function(or){
                midp(a1, a0, b1, b0, or=1/or)-alpha/2
              },  interval = interval)$root

              res <- c("odds ratio" = EST, lwr.ci=LCL, upr.ci= UCL)
            }
          }
  )
  return(res)
}


## odds ratio (OR) to relative risk (RR)


ORToRelRisk <- function(...) {
  UseMethod("ORToRelRisk")
}
  

ORToRelRisk.default <- function(or, p0, ...) {
  
  if(any(or <= 0))
    stop("'or' has to be positive")
  
  if(!all(ZeroIfNA(p0) %[]% c(0,1)))
    stop("'p0' has to be in (0,1)")
  
  or / (1 - p0 + p0*or)
  
}



ORToRelRisk.OddsRatio <- function(x, ...){
  
  .PredPrevalence <- function(model) {
    
    isNumericPredictor <- function(model, term){
      unname(attr(attr(model, "terms"), "dataClasses")[term] == "numeric")
    }
    
    # mean of response ist used for all numeric predictors
    meanresp <- mean(as.numeric(model.response(model)) - 1)
    # this is ok, as the second level is the one we predict in glm
    # https://stackoverflow.com/questions/23282048/logistic-regression-defining-reference-level-in-r
    
    preds <- attr(terms(model), "term.labels")

    # first the intercept
    res <- NA_real_
    
    for(i in seq_along(preds))
      if(isNumericPredictor(model=model, term=preds[i]))
        res <- c(res, meanresp)
      else {
        # get the proportions of the levels of the factor with the response ...
        fprev <- prop.table(table(model.frame(model)[, preds[i]], 
                                  model.response(model)), 1)
        # .. and use the proportion of positive response of the reference level
        res <- c(res, rep(fprev[1, 2], times=nrow(fprev)-1))
    }
 
    return(res)
  }
 
  
  or <- x$res[, c("or", "or.lci", "or.uci")]
  pprev <-  .PredPrevalence(x$model)
  
  res <- sapply(or, function(x) ORToRelRisk(x, pprev))
  rownames(res) <- rownames(or)
  colnames(res) <- c("rr", "rr.lci", "rr.uci")
  
  return(res)  
  
} 






# Cohen, Jacob. 1988. Statistical power analysis for the behavioral
# sciences, (2nd edition). Lawrence Erlbaum Associates, Hillsdale, New
# Jersey, United States.

# Garson, G. David. 2007. Statnotes: Topics in Multivariate
# Analysis. URL:
# http://www2.chass.ncsu.edu/garson/pa765/statnote.htm. Visited Spring
# 2006 -- Summer 2007.

# Goodman, Leo A. and William H. Kruskal. 1954. Measures of Association
# for Cross-Classifications. Journal of the American Statistical
# Association, Vol. 49, No. 268 (December 1954), pp. 732-764.

# Liebetrau, Albert M. 1983. Measures of Association. Sage University
# Paper series on Quantitative Applications in the Social Sciences,
# 07-032. Sage Publications, Beverly Hills and London, United
# States/England.

# Margolin, Barry H. and Richard J. Light. 1974. An Analysis of Variance
# for Categorical Data II: Small Sample Comparisons with Chi Square and
# Other Competitors. Journal of the American Statistical Association,
# Vol. 69, No. 347 (September 1974), pp. 755-764.

# Reynolds, H. T. 1977. Analysis of Nominal Data. Sage University Paper
# series on Quantitative Applications in the Social Sciences, 08-007,
# Sage Publications, Beverly Hills/London, California/UK.

# SAS Institute. 2007. Measures of Association
# http://support.sas.com/onlinedoc/913/getDoc/en/statug.hlp/freq_sect20.htm
# Visited January 2007.

# Theil, Henri. 1970. On the Estimation of Relationships Involving
# Qualitative Variables.  The American Journal of Sociology, Vol. 76,
# No. 1 (July 1970), pp. 103-154.

# N.B. One should use the values for the significance of the
# Goodman-Kruskal lambda and Theil's UC with reservation, as these
# have been modeled to mimic the behavior of the same statistics
# in SPSS.



GoodmanKruskalTau <- function(x, y = NULL, direction = c("row", "column"), conf.level = NA, ...){

  if(!is.null(y)) x <- table(x, y, ...)

  n <- sum(x)
  n.err.unconditional <- n^2
  sum.row <- rowSums(x)
  sum.col <- colSums(x)

  switch( match.arg( arg = direction, choices = c("row", "column") )
          , "column" = {             # Tau Column|Row

            for(i in 1:nrow(x))
              n.err.unconditional <- n.err.unconditional-n*sum(x[i,]^2/sum.row[i])
            n.err.conditional <- n^2-sum(sum.col^2)
            tau.CR <- 1-(n.err.unconditional/n.err.conditional)
            v <- n.err.unconditional/(n^2)
            d <- n.err.conditional/(n^2)
            f <- d*(v+1)-2*v
            var.tau.CR <- 0
            for(i in 1:nrow(x))
              for(j in 1:ncol(x))
                var.tau.CR <- var.tau.CR + x[i,j]*(-2*v*(sum.col[j]/n)+d*((2*x[i,j]/sum.row[i])-sum((x[i,]/sum.row[i])^2))-f)^2/(n^2*d^4)
            ASE.tau.CR <- sqrt(var.tau.CR)
            est <- tau.CR
            sigma2 <- ASE.tau.CR^2
          }
          , "row" = {             # Tau Row|Column

            for(j in 1:ncol(x))
              n.err.unconditional <- n.err.unconditional-n*sum(x[,j]^2/sum.col[j])
            n.err.conditional <- n^2-sum(sum.row^2)
            tau.RC <- 1-(n.err.unconditional/n.err.conditional)
            v <- n.err.unconditional/(n^2)
            d <- n.err.conditional/(n^2)
            f <- d*(v+1)-2*v
            var.tau.RC <- 0
            for(i in 1:nrow(x))
              for(j in 1:ncol(x))
                var.tau.RC <- var.tau.RC + x[i,j]*(-2*v*(sum.row[i]/n)+d*((2*x[i,j]/sum.col[j])-sum((x[,j]/sum.col[j])^2))-f)^2/(n^2*d^4)
            ASE.tau.RC <- sqrt(var.tau.RC)
            est <- tau.RC
            sigma2 <- ASE.tau.RC^2
          }
  )

  if(is.na(conf.level)){
    res <- est
  } else {
    pr2 <- 1 - (1 - conf.level)/2
    ci <- qnorm(pr2) * sqrt(sigma2) * c(-1, 1) + est
    res <- c(tauA=est, lwr.ci=ci[1], upr.ci=ci[2])
  }

  return(res)
}


# good description
# http://salises.mona.uwi.edu/sa63c/Crosstabs%20Measures%20for%20Nominal%20Data.htm

Lambda <- function(x, y = NULL, direction = c("symmetric", "row", "column"), conf.level = NA, ...){

  if(!is.null(y)) x <- table(x, y, ...)

  # Guttman'a lambda (1941), resp. Goodman Kruskal's Lambda (1954)

  n <- sum(x)
  csum <- colSums(x)
  rsum <- rowSums(x)
  rmax <- apply(x, 1, max)
  cmax <- apply(x, 2, max)
  max.rsum <- max(rsum)
  max.csum <- max(csum)

  nr <- nrow(x)
  nc <- ncol(x)

  switch( match.arg( arg = direction, choices = c("symmetric", "row", "column") )
          , "symmetric" = { res <- 0.5*(sum(rmax, cmax) - (max.csum +  max.rsum)) / (n - 0.5*(max.csum +  max.rsum)) }
          , "column" = { res <- (sum(rmax) - max.csum) / (n - max.csum) }
          , "row" = { res <- (sum(cmax) - max.rsum) / (n - max.rsum) }
  )

  if(is.na(conf.level)){
    res <- res
  } else {

    L.col <- matrix(,nc)
    L.row <- matrix(,nr)

    switch( match.arg( arg = direction, choices = c("symmetric", "row", "column") )
            , "symmetric" = {

              #     How to see:
              #     http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.pdf
              #     pp. 1744
              #     Author:   Nina

              l <- which.max(csum)
              k <- which.max(rsum)
              li <- apply(x,1,which.max)
              ki <- apply(x,2,which.max)

              w <- 2*n-max.csum-max.rsum
              v <- 2*n -sum(rmax,cmax)
              xx <- sum(rmax[li==l], cmax[ki==k], rmax[k], cmax[l])
              y <- 8*n-w-v-2*xx

              t <- rep(NA, length(li))
              for (i in 1:length(li)){
                t[i] <- (ki[li[i]]==i & li[ki[li[i]]]==li[i])
              }

              sigma2 <- 1/w^4*(w*v*y-2 *w^2*(n - sum(rmax[t]))-2*v^2*(n-x[k,l]))

            }
            , "column" = {
              L.col.max <- min(which(csum == max.csum))
              for(i in 1:nr) {
                if(length(which(x[i, intersect(which(x[i,] == max.csum), which(x[i,] == max.rsum))] == n))>0)
                  L.col[i] <- min(which(x[i, intersect(which(x[i,] == max.csum), which(x[i,] == max.rsum))] == n))
                else
                  if(x[i, L.col.max] == max.csum)
                    L.col[i] <- L.col.max
                  else
                    L.col[i] <- min(which(x[i,] == rmax[i]))
              }
              sigma2 <- (n-sum(rmax))*(sum(rmax) + max.csum -
                                         2*(sum(rmax[which(L.col == L.col.max)])))/(n-max.csum)^3
            }
            , "row" = {
              L.row.max <- min(which(rsum == max.rsum))
              for(i in 1:nc) {
                if(length(which(x[intersect(which(x[,i] == max.rsum), which(x[,i] == max.csum)),i] == n))>0)
                  L.row[i] <- min(which(x[i,intersect(which(x[i,] == max.csum), which(x[i,] == max.rsum))] == n))
                else
                  if(x[L.row.max,i] == max.rsum)
                    L.row[i] <- L.row.max
                  else
                    L.row[i] <- min(which(x[,i] == cmax[i]))
              }
              sigma2 <- (n-sum(cmax))*(sum(cmax) + max.rsum -
                                         2*(sum(cmax[which(L.row == L.row.max)])))/(n-max.rsum)^3
            }
    )

    pr2 <- 1 - (1 - conf.level)/2
    ci <- pmin(1, pmax(0, qnorm(pr2) * sqrt(sigma2) * c(-1, 1) + res))
    res <- c(lambda = res,  lwr.ci=ci[1], upr.ci=ci[2])
  }

  return(res)
}



UncertCoef <- function(x, y = NULL, direction = c("symmetric", "row", "column"),
                       conf.level = NA, p.zero.correction = 1/sum(x)^2, ... ) {
  # Theil's UC (1970)
  # slightly nudge zero values so that their logarithm can be calculated (cf. Theil 1970: x->0 => xlogx->0)
  if(!is.null(y)) x <- table(x, y, ...)

  x[x == 0] <- p.zero.correction

  n <- sum(x)
  rsum <- rowSums(x)
  csum <- colSums(x)

  hx <- -sum((apply(x, 1, sum) * log(apply(x, 1, sum)/n))/n)
  hy <- -sum((apply(x, 2, sum) * log(apply(x, 2, sum)/n))/n)
  hxy <- -sum(apply(x, c(1, 2), sum) * log(apply(x, c(1, 2), sum)/n)/n)

  switch( match.arg( arg = direction, choices = c("symmetric", "row", "column") )
          , "symmetric" = { res <- 2 * (hx + hy - hxy)/(hx + hy) }
          , "row" = { res <- (hx + hy - hxy)/hx }
          , "column" = { res <- (hx + hy - hxy)/hy }
  )

  if(!is.na(conf.level)){
    var.uc.RC <- var.uc.CR <- 0
    for(i in 1:nrow(x))
      for(j in 1:ncol(x))
      { var.uc.RC <- var.uc.RC + x[i,j]*(hx*log(x[i,j]/csum[j])+((hy-hxy)*log(rsum[i]/n)))^2/(n^2*hx^4);
      var.uc.CR <- var.uc.CR + x[i,j]*(hy*log(x[i,j]/rsum[i])+((hx-hxy)*log(csum[j]/n)))^2/(n^2*hy^4);
      }
    switch( match.arg( arg = direction, choices = c("symmetric", "row", "column") )
            , "symmetric" = {
              sigma2 <- 4*sum(x * (hxy * log(rsum %o% csum/n^2) - (hx+hy)*log(x/n))^2 ) /
                (n^2*(hx+hy)^4)
            }
            , "row" = { sigma2 <- var.uc.RC }
            , "column" = { sigma2 <- var.uc.CR }
    )

    pr2 <- 1 - (1 - conf.level)/2
    ci <- qnorm(pr2) * sqrt(sigma2) * c(-1, 1) + res

    res <- c(uc = res,  lwr.ci=max(ci[1], -1), upr.ci=min(ci[2], 1))
  }
  return(res)
}


TheilU <- function(a, p, type = c(2, 1), na.rm = FALSE){

  if(na.rm) {
    idx <- complete.cases(a, p)
    a <- a[idx]
    p <- p[idx]
  }
  n <- length(a)
  if(length(p)!=n) {
    warning("a must have same length as p")
    res <- NA
  } else {
    switch( match.arg(as.character(type), c("2", "1"))
            , "1" = { res <- sqrt(sum((a-p)^2/n))/(sqrt(sum(a^2)/n) + sqrt(sum(p^2)/n)) }
            , "2" = { res <- sqrt(sum((a-p)^2))/(sqrt(sum(a^2))) }
    )
  }
  return(res)

}


#S function SomersDelta
#
#    Calculates concordance probability and Somers'  Dxy  rank  correlation
#    between  a  variable  X  (for  which  ties are counted) and a binary
#    variable Y (having values 0 and 1, for which ties are not  counted).
#    Uses short cut method based on average ranks in two groups.
#
#    Usage:
#
#         SomersDelta(x, y, weights)
#
#    Returns vector whose elements are C Index, Dxy, n and missing, where
#    C Index is the concordance probability and Dxy=2(C Index-.5).
#
#    F. Harrell 28 Nov 90     6 Apr 98: added weights
#
# SomersDelta2 <- function(x, y, weights=NULL, normwt=FALSE, na.rm=TRUE) {
#
#   wtd.mean <- function(x, weights=NULL, normwt='ignored', na.rm=TRUE)
#   {
#     if(!length(weights)) return(mean(x, na.rm=na.rm))
#     if(na.rm) {
#       s <- !is.na(x + weights)
#       x <- x[s]
#       weights <- weights[s]
#     }
#
#     sum(weights*x)/sum(weights)
#   }
#
#   wtd.table <- function(x, weights=NULL, type=c('list','table'),
#                         normwt=FALSE, na.rm=TRUE)
#   {
#     type <- match.arg(type)
#     if(!length(weights))
#       weights <- rep(1, length(x))
#
#     isdate <- IsDate(x)  ### 31aug02 + next 2
#     ax <- attributes(x)
#     ax$names <- NULL
#     x <- if(is.character(x)) as.category(x)
#          else unclass(x)
#
#     lev <- levels(x)
#     if(na.rm) {
#       s <- !is.na(x + weights)
#       x <- x[s,drop=FALSE]    ### drop is for factor class
#       weights <- weights[s]
#     }
#
#     n <- length(x)
#     if(normwt)
#       weights <- weights*length(x)/sum(weights)
#
#     i <- order(x)  ### R does not preserve levels here
#     x <- x[i]; weights <- weights[i]
#
#     if(any(diff(x)==0)) {  ### slightly faster than any(duplicated(xo))
#       weights <- tapply(weights, x, sum)
#       if(length(lev)) {    ### 3apr03
#         levused <- lev[sort(unique(x))]  ### 7sep02
#         ### Next 3 lines 21apr03
#         if((length(weights) > length(levused)) &&
#            any(is.na(weights)))
#           weights <- weights[!is.na(weights)]
#
#         if(length(weights) != length(levused))
#           stop('program logic error')
#
#         names(weights) <- levused   ### 10Apr01  length 16May01
#       }
#
#       if(!length(names(weights)))
#         stop('program logic error')  ### 16May01
#
#       if(type=='table')
#         return(weights)
#
#       x <- all.is.numeric(names(weights),'vector')
#       if(isdate)
#         attributes(x) <- c(attributes(x),ax)   ### 31aug02
#
#       names(weights) <- NULL
#       return(list(x=x, sum.of.weights=weights))
#     }
#
#     xx <- x  ### 31aug02
#     if(isdate)
#       attributes(xx) <- c(attributes(xx),ax)
#
#     if(type=='list')
#       list(x=if(length(lev))lev[x]
#              else xx,
#            sum.of.weights=weights)
#     else {
#       names(weights) <- if(length(lev)) lev[x]
#                         else xx
#       weights
#     }
#   }
#
#
#   wtd.rank <- function(x, weights=NULL, normwt=FALSE, na.rm=TRUE)
#   {
#     if(!length(weights))
#       return(rank(x),na.last=if(na.rm)NA else TRUE)
#
#     tab <- wtd.table(x, weights, normwt=normwt, na.rm=na.rm)
#
#     freqs <- tab$sum.of.weights
#     ### rank of x = ### <= x - .5 (# = x, minus 1)
#     r <- cumsum(freqs) - .5*(freqs-1)
#     ### Now r gives ranks for all unique x values.  Do table look-up
#     ### to spread these ranks around for all x values.  r is in order of x
#     approx(tab$x, r, xout=x)$y
#   }
#
#
#   if(length(y)!=length(x))stop("y must have same length as x")
#   y <- as.integer(y)
#   wtpres <- length(weights)
#   if(wtpres && (wtpres != length(x)))
#     stop('weights must have same length as x')
#
#   if(na.rm) {
#       miss <- if(wtpres) is.na(x + y + weights)
#       else is.na(x + y)
#
#       nmiss <- sum(miss)
#       if(nmiss>0) {
#           miss <- !miss
#           x <- x[miss]
#           y <- y[miss]
#           if(wtpres) weights <- weights[miss]
#         }
#     }
#   else nmiss <- 0
#
#   u <- sort(unique(y))
#   if(any(! y %in% 0:1)) stop('y must be binary')
#
#   if(wtpres) {
#       if(normwt)
#         weights <- length(x)*weights/sum(weights)
#       n <- sum(weights)
#     }
#   else n <- length(x)
#
#   if(n<2) stop("must have >=2 non-missing observations")
#
#   n1 <- if(wtpres)sum(weights[y==1]) else sum(y==1)
#
#   if(n1==0 || n1==n)
#     return(c(C=NA,Dxy=NA,n=n,Missing=nmiss))
#
#   mean.rank <- if(wtpres)
#       wtd.mean(wtd.rank(x, weights, na.rm=FALSE), weights*y)
#     else
#       mean(rank(x)[y==1])
#
#   c.index <- (mean.rank - (n1+1)/2)/(n-n1)
#   dxy <- 2*(c.index-.5)
#   r <- c(c.index, dxy, n, nmiss)
#   names(r) <- c("C", "Dxy", "n", "Missing")
#   r
# }
#


SomersDelta <- function(x,  y = NULL, direction=c("row","column"), conf.level = NA, ...) {

  if(!is.null(y)) tab <- table(x, y, ...)
  else tab <- as.table(x)

  # tab is a matrix of counts
  x <- ConDisPairs(tab)

  # use .DoCount
  #   if(is.na(conf.level)) {
  #     d.tab <- as.data.frame.table(tab)
  #     x <- .DoCount(d.tab[,1], d.tab[,2], d.tab[,3])
  #   } else {
  #     x <- ConDisPairs(tab)
  #   }

  m <- min(dim(tab))
  n <- sum(tab)
  switch( match.arg( arg = direction, choices = c("row","column") )
          , "row" = { ni. <- colSums(tab) }
          , "column" = { ni. <- rowSums(tab) }
  )
  wt <- n^2 - sum(ni.^2)
  # Asymptotic standard error: sqrt(sigma2)
  sigma2 <- 4/wt^4 * (sum(tab * (wt*(x$pi.c - x$pi.d) - 2*(x$C-x$D)*(n-ni.))^2))
  # debug: print(sqrt(sigma2))

  somers <- (x$C - x$D) / (n * (n-1) /2 - sum(ni. * (ni. - 1) /2 ))

  pr2 <- 1 - (1 - conf.level)/2
  ci <- qnorm(pr2) * sqrt(sigma2) * c(-1, 1) + somers

  if(is.na(conf.level)){
    result <- somers
  } else {
    result <- c(somers = somers,  lwr.ci=max(ci[1], -1), upr.ci=min(ci[2], 1))
  }

  return(result)

}


# Computes rank correlation measures between a variable X and a possibly
# censored variable Y, with event/censoring indicator EVENT
# Rank correlation is extension of Somers' Dxy = 2(Concordance Prob-.5)
# See Harrell et al JAMA 1984(?)
# Set outx=T to exclude ties in X from computations (-> Goodman-Kruskal
#  gamma-type rank correlation)
# based on rcorr.cens in Hmisc, https://stat.ethz.ch/pipermail/r-help/2003-March/030837.html
# author Frank Harrell


# GoodmanGammaF <- function(x, y) {

# ### Fortran implementation of Concordant/Discordant, but still O(n^2)

# x <- as.numeric(x)
# y <- as.numeric(y)

# event <-  rep(TRUE, length(x))
# if(length(y)!=length(x))
# stop("y must have same length as x")

# outx <- TRUE
# n <- length(x)
# ne <- sum(event)

# z <- .Fortran("cidxcn", x, y, event, length(x), nrel=double(1), nconc=double(1),
# nuncert=double(1),
# c.index=double(1), gamma=double(1), sd=double(1), as.logical(outx)
# )

# r <- c(z$c.index, z$gamma, z$sd, n, ne, z$nrel, z$nconc, z$nuncert)
# names(r) <- c("C Index","Dxy","S.D.","n","uncensored",
# "Relevant Pairs",
# "Concordant","Uncertain")
# unname(r[2])

# }


# GoodmanGamma(as.numeric(d.frm$Var1), as.numeric(d.frm$Var2))
# cor(as.numeric(d.frm$Var1), as.numeric(d.frm$Var2))

GoodmanKruskalGamma <- function(x, y = NULL, conf.level = NA, ...) {

  if(!is.null(y)) tab <- table(x, y, ...)
  else tab <- as.table(x)

  # tab is a matrix of counts
  # Based on code of Michael Friendly and Laura Thompson
  # Confidence interval calculation and output from Greg Rodd

  x <- ConDisPairs(tab)

  psi <- 2 * (x$D * x$pi.c - x$C * x$pi.d)/(x$C + x$D)^2
  # Asymptotic standard error: sqrt(sigma2)
  sigma2 <- sum(tab * psi^2) - sum(tab * psi)^2

  gamma <- (x$C - x$D)/(x$C + x$D)

  if(is.na(conf.level)){
    result <- gamma
  } else {
    pr2 <- 1 - (1 - conf.level)/2
    ci <- qnorm(pr2) * sqrt(sigma2) * c(-1, 1) + gamma
    result <- c(gamma = gamma,  lwr.ci=max(ci[1], -1), upr.ci=min(ci[2], 1))
  }

  return(result)

}


# KendallTauB.table <- function(tab, conf.level = NA) {

# http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.pdf
# pp 1738

# tab is a matrix of counts

# x <- ConDisPairs(tab)

# n <- sum(tab)
# ni. <- apply(tab, 1, sum)
# n.j <- apply(tab, 2, sum)
# wr <- n^2 - sum(ni.^2)
# wc <- n^2 - sum(n.j^2)
# w <- sqrt(wr * wc)
# vij <- ni. * wc + n.j * wr
# dij <- x$pi.c - x$pi.d    ### Aij - Dij

# Asymptotic standard error: sqrt(sigma2)
# sigma2 <- 1/w^4 * (sum(tab * (2*w*dij + taub*vij)^2) - n^3 * taub^2 * (wr + wc)^2)

# this is the H0 = 0 variance:
# sigma2 <- 4/(wr * wc) * (sum(tab * (x$pi.c - x$pi.d)^2) - 4*(x$C - x$D)^2/n )


# taub <- 2*(x$C - x$D)/sqrt(wr * wc)

# if(is.na(conf.level)){
# result <- taub
# } else {
# pr2 <- 1 - (1 - conf.level)/2
# ci <- qnorm(pr2) * sqrt(sigma2) * c(-1, 1) + taub
# result <- c(taub = taub,  lwr.ci=max(ci[1], -1), ups.ci=min(ci[2], 1))
# }

# return(result)

# }



KendallTauA <- function(x, y = NULL, direction = c("row", "column"), conf.level = NA, ...){

  if(!is.null(y)) tab <- table(x, y, ...)
  else tab <- as.table(x)

  x <- ConDisPairs(tab)

  n <- sum(tab)
  n0 <- n*(n-1)/2

  taua <- (x$C - x$D) / n0

  # Hollander, Wolfe pp. 415/416
  # think we should not consider ties here, so take only the !=0 part
  Ci <- as.vector((x$pi.c - x$pi.d) * (tab!=0))
  Ci <- Ci[Ci!=0]
  C_ <- sum(Ci)/n
  sigma2 <- 2/(n*(n-1)) * ((2*(n-2))/(n*(n-1)^2) * sum((Ci - C_)^2) + 1 - taua^2)

  if (is.na(conf.level)) {
    result <- taua
  }
  else {

    pr2 <- 1 - (1 - conf.level)/2
    ci <- qnorm(pr2) * sqrt(sigma2) * c(-1, 1) + taua
    result <- c(tau_a = taua, lwr.ci = max(ci[1], -1), upr.ci = min(ci[2], 1))
  }

  return(result)

}


# KendallTauB <- function(x, y = NULL, conf.level = NA, test=FALSE, alternative = c("two.sided", "less", "greater"), ...){
KendallTauB <- function(x, y = NULL, conf.level = NA, ...){

  # Ref: http://www.fs.fed.us/psw/publications/lewis/LewisHMP.pdf
  # pp 2-9
  #
  if (!is.null(y)) {
    dname <- paste(deparse(substitute(x)), "and", deparse(substitute(y)))
  } else {
    dname <- deparse(substitute(x))
  }

  if(!is.null(y)) tab <- table(x, y, ...)
  else tab <- as.table(x)

  x <- ConDisPairs(tab)

  n <- sum(tab)
  n0 <- n*(n-1)/2
  ti <- rowSums(tab)  # apply(tab, 1, sum)
  uj <- colSums(tab)  # apply(tab, 2, sum)
  n1 <- sum(ti * (ti-1) / 2)
  n2 <- sum(uj * (uj-1) / 2)

  taub <- (x$C - x$D) / sqrt((n0-n1)*(n0-n2))

  pi <- tab / sum(tab)

  pdiff <- (x$pi.c - x$pi.d) / sum(tab)
  Pdiff <- 2 * (x$C - x$D) / sum(tab)^2

  rowsum <- rowSums(pi)  # apply(pi, 1, sum)
  colsum <- colSums(pi)  # apply(pi, 2, sum)

  rowmat <- matrix(rep(rowsum, dim(tab)[2]), ncol = dim(tab)[2])
  colmat <- matrix(rep(colsum, dim(tab)[1]), nrow = dim(tab)[1], byrow = TRUE)

  delta1 <- sqrt(1 - sum(rowsum^2))
  delta2 <- sqrt(1 - sum(colsum^2))

  # Compute asymptotic standard errors taub
  tauphi <- (2 * pdiff + Pdiff * colmat) * delta2 * delta1 + (Pdiff * rowmat * delta2)/delta1
  sigma2 <- ((sum(pi * tauphi^2) - sum(pi * tauphi)^2)/(delta1 * delta2)^4) / n
  
  # for very small pi/tauph it's possible that sigma2 gets negative so we cut small negative values here
  # example:  KendallTauB(table(iris$Species, iris$Species))
  if(sigma2 < .Machine$double.eps * 10) sigma2 <- 0

  if (is.na(conf.level)) {
    result <- taub
  }
  else {
    pr2 <- 1 - (1 - conf.level)/2
    ci <- qnorm(pr2) * sqrt(sigma2) * c(-1, 1) + taub
    result <- c(tau_b = taub, lwr.ci = max(ci[1], -1), upr.ci = min(ci[2], 1))
  }

  #   if(test){
  #
  #     alternative <- match.arg(alternative)
  #
  #     zstat <- taub / sqrt(sigma2)
  #
  #     if (alternative == "less") {
  #       pval <- pnorm(zstat)
  #       cint <- c(-Inf, zstat + qnorm(conf.level))
  #     }
  #     else if (alternative == "greater") {
  #       pval <- pnorm(zstat, lower.tail = FALSE)
  #       cint <- c(zstat - qnorm(conf.level), Inf)
  #     }
  #     else {
  #       pval <- 2 * pnorm(-abs(zstat))
  #       alpha <- 1 - conf.level
  #       cint <- qnorm(1 - alpha/2)
  #       cint <- zstat + c(-cint, cint)
  #     }
  #
  #     RVAL <- list()
  #     RVAL$p.value <- pval
  #     RVAL$method <- "Kendall's rank correlation tau"
  #     RVAL$data.name <- dname
  #     RVAL$statistic <- x$C - x$D
  #     names(RVAL$statistic) <- "T"
  #     RVAL$estimate <- taub
  #     names(RVAL$estimate) <- "tau-b"
  #     RVAL$conf.int <- c(max(ci[1], -1), min(ci[2], 1))
  #   #  attr(RVAL$conf.int, "conf.level") = round(attr(ci,"conf.level"), 3)
  #     class(RVAL) <- "htest"
  #     return(RVAL)
  #
  # #     rval <- list(statistic = zstat, p.value = pval,
  # #                  parameter = sd_pop,
  # #                  conf.int = cint, estimate = estimate, null.value = mu,
  # #                  alternative = alternative, method = method, data.name = dname)
  #
  #   } else {
  return(result)
  #   }

}

# KendallTauB(x, y, conf.level = 0.95, test=TRUE)
#
# cor.test(x,y, method="kendall")

# tab <- as.table(rbind(c(26,26,23,18,9),c(6,7,9,14,23)))
# KendallTauB(tab, conf.level = 0.95)
# Assocs(tab)

StuartTauC <- function(x, y = NULL, conf.level = NA, ...) {

  if(!is.null(y)) tab <- table(x, y, ...)
  else tab <- as.table(x)

  # Reference:
  # http://v8doc.sas.com/sashtml/stat/chap28/sect18.htm
  x <- ConDisPairs(tab)

  m <- min(dim(tab))
  n <- sum(tab)
  # Asymptotic standard error: sqrt(sigma2)
  sigma2 <- 4 * m^2 / ((m-1)^2 * n^4) * (sum(tab * (x$pi.c - x$pi.d)^2) - 4 * (x$C -x$D)^2/n)
  # debug: print(sqrt(sigma2))

  # Tau-c = (C - D)*[2m/(n2(m-1))]
  tauc <- (x$C - x$D) * 2 * min(dim(tab)) / (sum(tab)^2*(min(dim(tab))-1))

  if(is.na(conf.level)){
    result <- tauc
  } else {
    pr2 <- 1 - (1 - conf.level)/2
    CI <- qnorm(pr2) * sqrt(sigma2) * c(-1, 1) + tauc
    result <- c(tauc = tauc,  lwr.ci=max(CI[1], -1), upr.ci=min(CI[2], 1))
  }

  return(result)

}




# SpearmanRho <- function(x, y = NULL, use = c("everything", "all.obs", "complete.obs",
#                                              "na.or.complete","pairwise.complete.obs"), conf.level = NA ) {
# 
#   if(is.null(y)) {
#     x <- Untable(x)
#     y <- x[,2]
#     x <- x[,1]
#   }
#   # Reference:
#   #   https://stat.ethz.ch/pipermail/r-help/2006-October/114319.html
#   # fisher z transformation for calc SpearmanRho ci :
#   # Conover WJ, Practical Nonparametric Statistics (3rd edition). Wiley 1999.
# 
#   # http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.pdf
#   # pp 1738
# 
# 
#   # n <- sum(tab)
#   # ni. <- apply(tab, 1, sum)
#   # n.j <- apply(tab, 2, sum)
#   # F <- n^3 - sum(ni.^3)
#   # G <- n^3 - sum(n.j^3)
#   # w <- 1/12*sqrt(F * G)
# 
#   # ### Asymptotic standard error: sqrt(sigma2)
#   # sigma2 <- 1
#   # ### debug: print(sqrt(sigma2))
# 
#   # ### Tau-c = (C - D)*[2m/(n2(m-1))]
#   # est <- 1
# 
#   # if(is.na(conf.level)){
#   # result <- tauc
#   # } else {
#   # pr2 <- 1 - (1 - conf.level)/2
#   # CI <- qnorm(pr2) * sqrt(sigma2) * c(-1, 1) + est
#   # result <- c(SpearmanRho = est,  lwr.ci=max(CI[1], -1), ups.ci=min(CI[2], 1))
#   # }
# 
#   # return(result)
# 
# 
#   # Ref:
#   # http://www-01.ibm.com/support/docview.wss?uid=swg21478368
# 
#   use <- match.arg(use, choices=c("everything", "all.obs", "complete.obs",
#                                   "na.or.complete","pairwise.complete.obs"))
# 
#   rho <- cor(as.numeric(x), as.numeric(y), method="spearman", use = use)
# 
#   e_fx <- exp( 2 * ((.5 * log((1+rho) / (1-rho))) - c(1, -1) *
#                       (abs(qnorm((1 - conf.level)/2))) * (1 / sqrt(sum(complete.cases(x,y)) - 3)) ))
#   ci <- (e_fx - 1) / (e_fx + 1)
# 
#   if (is.na(conf.level)) {
#     result <- rho
#   } else {
#     pr2 <- 1 - (1 - conf.level) / 2
#     result <- c(rho = rho, lwr.ci = max(ci[1], -1), upr.ci = min(ci[2], 1))
#   }
#   return(result)
# 
# }


# replaced by DescTools v 0.99.36
# as Untable() is a nogo for tables with high frequencies...

SpearmanRho <- function(x, y = NULL, use = c("everything", "all.obs", "complete.obs",
                                             "na.or.complete","pairwise.complete.obs"), conf.level = NA ) {

  if(is.null(y)) {
    # implemented following
    # https://support.sas.com/documentation/onlinedoc/stat/151/freq.pdf
    # S. 3103
    
    # http://support.sas.com/documentation/cdl/en/statugfreq/63124/PDF/default/statugfreq.pdf
    # pp 1738
    
    # Old References:
    # https://stat.ethz.ch/pipermail/r-help/2006-October/114319.html
    # fisher z transformation for calc SpearmanRho ci :
    # Conover WJ, Practical Nonparametric Statistics (3rd edition). Wiley 1999.
    
    
    n <- sum(x)
    ni. <- apply(x, 1, sum)
    n.j <- apply(x, 2, sum)
    
    ri <- rank(rownames(x))
    ci <- rank(colnames(x))
    ri <- 1:nrow(x)
    ci <- 1:ncol(x)
    
    R1i <- c(sapply(seq_along(ri), 
                    function(i) ifelse(i==1, 0, cumsum(ni.)[i-1]) + ni.[i]/2))
    C1i <- c(sapply(seq_along(ci), 
                    function(i) ifelse(i==1, 0, cumsum(n.j)[i-1]) + n.j[i]/2))
    
    Ri <- R1i - n/2
    Ci <- C1i - n/2
    
    v <- sum(x * outer(Ri, Ci))
    F <- n^3 - sum(ni.^3)
    G <- n^3 - sum(n.j^3)
    
    w <- 1/12*sqrt(F * G)
    
    rho <- v/w
    
  } else {
    
    # http://www-01.ibm.com/support/docview.wss?uid=swg21478368
    
    use <- match.arg(use, choices=c("everything", "all.obs", "complete.obs",
                                    "na.or.complete","pairwise.complete.obs"))
    
    rho <- cor(as.numeric(x), as.numeric(y), method="spearman", use = use)
    
    n <- complete.cases(x,y)
    
  }
  
  
  e_fx <- exp( 2 * ((.5 * log((1+rho) / (1-rho))) - c(1, -1) *
                      (abs(qnorm((1 - conf.level)/2))) * (1 / sqrt(sum(n) - 3)) ))
  ci <- (e_fx - 1) / (e_fx + 1)
  
  if (is.na(conf.level)) {
    result <- rho
  } else {
    
    if(identical(rho, 1)){     # will blast the fisher z transformation
      result <- c(rho=1, lwr.ci=1, upr.ci=1)
      
    } else {
      pr2 <- 1 - (1 - conf.level) / 2
      result <- c(rho = rho, lwr.ci = max(ci[1], -1), upr.ci = min(ci[2], 1))
    }
  }
  
  return(result)

}




# Definitions:
# http://v8doc.sas.com/sashtml/stat/chap28/sect18.htm

ConDisPairs <-function(x){

  # tab is a matrix of counts
  # Based on code of Michael Friendly and Laura Thompson

  # slooooow because of 2 nested for clauses O(n^2)
  # this is NOT faster when implemented with a mapply(...)

  # Lookin for alternatives in C
  # http://en.verysource.com/code/1169955_1/kendl2.cpp.html
  # cor(..., "kendall") is for dimensions better

  n <- nrow(x)
  m <- ncol(x)
  pi.c <- pi.d <- matrix(0, nrow = n, ncol = m)

  row.x <- row(x)
  col.x <- col(x)

  for(i in 1:n){
    for(j in 1:m){
      pi.c[i, j] <- sum(x[row.x<i & col.x<j]) + sum(x[row.x>i & col.x>j])
      pi.d[i, j] <- sum(x[row.x<i & col.x>j]) + sum(x[row.x>i & col.x<j])
    }
  }
  C <- sum(pi.c * x)/2
  D <- sum(pi.d * x)/2

  return(list(pi.c = pi.c, pi.d = pi.d, C = C, D = D))

}


BinTree <- function(n) {

  ranks <- rep(0L, n)
  yet.to.do <- 1:n
  depth <- floor(logb(n, 2))
  start <- as.integer(2^depth)
  lastrow.length <- 1 + n - start
  indx <- seq(1L, by = 2L, length = lastrow.length)
  ranks[yet.to.do[indx]] <- start + 0:(length(indx) - 1L)
  yet.to.do <- yet.to.do[-indx]

  while (start > 1) {
    start <- as.integer(start/2)
    indx <- seq(1L, by = 2L, length = start)
    ranks[yet.to.do[indx]] <- start + 0:(start - 1L)
    yet.to.do <- yet.to.do[-indx]
  }

  return(ranks)

}



PlotBinTree <- function(x, main="Binary tree", horiz=FALSE, cex=1.0, col=1, ...){

  bimean <- function(x){
    (x[rep(c(TRUE, FALSE), length.out=length(x))] +
       x[rep(c(FALSE, TRUE), length.out=length(x))]) / 2
  }

  n <- length(x)
  s <- floor(log(n, 2))

  # if(sortx)
  #   x <- sort(x)
  # else
  #   x <- x[BinTree(length(x))]

  lst <- list()
  lst[[s+1]] <- 1:2^s
  for(i in s:1){
    lst[[i]] <- bimean(lst[[i+1]])
  }

  d.frm <- merge(
    x=data.frame(x=x, binpos=BinTree(length(x))),
    y=data.frame(xpos = unlist(lst),
                 ypos = -rep(1:length(lst), unlist(lapply(lst, length))),
                 pos  = 1:(2^(s+1)-1)
    ), by.x="binpos", by.y="pos")

  if(horiz){

    Canvas(xlim=c(1, s+1.5), ylim=c(0, 2^s+1), main=main,
           asp=FALSE, mar=c(0,0,2,0)+1 )

    ii <- 0
    for(i in 1L:(length(lst)-1)){
      for(j in seq_along(lst[[i]])){
        ii <- ii + 1
        if(ii < n)
          segments(y0=lst[[i]][j], x0=i, y1=lst[[i+1]][2*(j-1)+1], x1=i+1, col=col)
        ii <- ii + 1
        if(ii < n)
          segments(y0=lst[[i]][j], x0=i, y1=lst[[i+1]][2*(j-1)+2], x1=i+1, col=col)
      }
    }

    # Rotate positions for the text
    # rotxy <- Rotate(d.frm$xpos, d.frm$ypos, theta=pi/2)
    # d.frm$xpos <- rotxy$x
    # d.frm$ypos <- rotxy$y

    m <- d.frm$xpos
    d.frm$xpos <- -d.frm$ypos
    d.frm$ypos <- m

  } else {

    Canvas(xlim=c(0,2^s+1), ylim=c(-s,1)-1.5, main=main,
           asp=FALSE, mar=c(0,0,2,0)+1, ...)

    ii <- 0
    for(i in 1L:(length(lst)-1)){
      for(j in seq_along(lst[[i]])){
        ii <- ii + 1
        if(ii < n)
          segments(x0=lst[[i]][j], y0=-i, x1=lst[[i+1]][2*(j-1)+1], y1=-i-1, col=col)
        ii <- ii + 1
        if(ii < n)
          segments(x0=lst[[i]][j], y0=-i, x1=lst[[i+1]][2*(j-1)+2], y1=-i-1, col=col)
      }
    }

  }
  BoxedText(x=d.frm$xpos, y=d.frm$ypos, labels=d.frm$x, cex=cex,
            border=NA, xpad = 0.5, ypad = 0.5)

  invisible(d.frm)

}





.DoCount <- function(y, x, wts) {

  # O(n log n):
  # http://www.listserv.uga.edu/cgi-bin/wa?A2=ind0506d&L=sas-l&P=30503



  if(missing(wts)) wts <- rep_len(1L, length(x))

  ord <- order(y)
  ux <- sort(unique(x))
  n2 <- length(ux)
  idx <- BinTree(n2)[match(x[ord], ux)] - 1L
  y <- cbind(y,1)
  res <- .Call("conc", PACKAGE="DescTools", y[ord,], as.double(wts[ord]),
               as.integer(idx), as.integer(n2))

  return(list(pi.c = NA, pi.d = NA, C = res[2], D = res[1], T=res[3], N=res[4]))

}


.assocs_condis <- function(x, y = NULL, conf.level = NA, ...) {

  # (very) fast function for calculating all concordant/discordant pairs based measures
  # all table operations are cheap compared to the counting of cons/disc...
  # no implementation for confidence levels so far.

  if(!is.null(y))
    x <- table(x, y)

  # we need rowsums and colsums, so tabling is mandatory...
  # use weights
  x <- as.table(x)
  min_dim <- min(dim(x))
  n <- sum(x)
  ni. <- rowSums(x)
  nj. <- colSums(x)

  n0 <- n*(n-1L)/2
  n1 <- sum(ni. * (ni.-1L) / 2)
  n2 <- sum(nj. * (nj.-1L) / 2)

  x <- as.data.frame(x)
  z <- .DoCount(x[,1], x[,2], x[,3])

  gamma <- (z$C - z$D)/(z$C + z$D)

  somers_r <- (z$C - z$D) / (n0 - n2)
  somers_c <- (z$C - z$D) / (n0 - n1)

  taua <- (z$C - z$D) / n0
  taub <- (z$C - z$D) / sqrt((n0-n1)*(n0-n2))
  tauc <- (z$C - z$D) * 2 * min_dim / (n^2*(min_dim-1L))


  if(is.na(conf.level)){
    result <- c(gamma=gamma, somers_r=somers_r, somers_c=somers_c,
                taua=taua, taub=taub, tauc=tauc)

  } else {

    # psi <- 2 * (x$D * x$pi.c - x$C * x$pi.d)/(x$C + x$D)^2
    # # Asymptotic standard error: sqrt(sigma2)
    # gamma_sigma2 <- sum(tab * psi^2) - sum(tab * psi)^2
    #
    # pr2 <- 1 - (1 - conf.level)/2
    # ci <- qnorm(pr2) * sqrt(gamma_sigma2) * c(-1, 1) + gamma
    # result <- c(gamma = gamma,  lwr.ci=max(ci[1], -1), ups.ci=min(ci[2], 1))

    result <- NA

  }

  return(result)

}



TablePearson <- function(x, scores.type="table") {
  
  # based on Lecoutre 
  # https://stat.ethz.ch/pipermail/r-help/2005-July/076371.html
  # but the test might not be correctly implemented (negative values in sqrt)
  
  
  # Statistic
  sR <- scores(x, 1, scores.type)
  sC <- scores(x, 2, scores.type)
  n <- sum(x)
  Rbar <- sum(apply(x, 1, sum) * sR) / n
  Cbar <- sum(apply(x, 2, sum) * sC) / n
  ssr <- sum(x * (sR-Rbar)^2)
  ssc <- sum(t(x) * (sC-Cbar)^2)
  tmpij <- outer(sR, sC, FUN=function(a,b) return((a-Rbar)*(b-Cbar)))
  ssrc <-  sum(x*tmpij)
  v <- ssrc
  w <- sqrt(ssr*ssc)
  r <- v/w
  
  return(r)
  
}  


TableSpearman <-  function(x, scores.type="table"){
# following:
# https://stat.ethz.ch/pipermail/r-help/2005-July/076371.html
  
#   tablespearman=function(x)
#   {
#     # Details algorithme manuel SAS PROC FREQ page 540
#     # Statistic
#     n=sum(x)
#     nr=nrow(x)
#     nc=ncol(x)
#     tmpd=cbind(expand.grid(1:nr,1:nc))
#     ind=rep(1:(nr*nc),as.vector(x))
#     tmp=tmpd[ind,]
#     rhos=cor(apply(tmp,2,rank))[1,2]
#     # ASE
#     Ri=scores(x,1,"ranks")- n/2
#     Ci=scores(x,2,"ranks")- n/2
#     sr=apply(x,1,sum)
#     sc=apply(x,2,sum)
#     F=n^3 - sum(sr^3)
#     G=n^3 - sum(sc^3)
#     w=(1/12)*sqrt(F*G)
#     vij=data
#     for (i in 1:nrow(x))
#     {
#       qi=0
#       if (i<nrow(x))
#       {
#         for (k in i:nrow(x)) qi=qi+sum(x[k,]*Ci)
#       }
#     }
#     for (j in 1:ncol(x))
#     {
#       qj=0
#       if (j<ncol(x))
#       {
#         for (k in j:ncol(x)) qj=qj+sum(x[,k]*Ri)
#       }
#       vij[i,j]=n*(Ri[i]*Ci[j] +
#                     0.5*sum(x[i,]*Ci)+0.5*sum(data[,j]*Ri) +qi+qj)
#     }
#     
#     
#     v=sum(data*outer(Ri,Ci))
#     wij=-n/(96*w)*outer(sr,sc,FUN=function(a,b) return(a^2*G+b^2*F))
#     zij=w*vij-v*wij
#     zbar=sum(data*zij)/n
#     vard=(1/(n^2*w^4))*sum(x*(zij-zbar)^2)
#     ASE=sqrt(vard)		
#     # Test
#     vbar=sum(x*vij)/n
#     p1=sum(x*(vij-vbar)^2)
#     p2=n^2*w^2
#     var0=p1/p2
#     stat=rhos/sqrt(var0)
#     
#     # Output
#     out=list(estimate=rhos,ASE=ASE,name="Spearman
# correlation",bornes=c(-1,1))
#     class(out)="ordtest"
#     return(out)
#   }
#   
#   #tablespearman(data)
}



# all association measures combined

Assocs <- function(x, conf.level = 0.95, verbose=NULL){

  if(is.null(verbose)) verbose <- "3"
  if(verbose != "3") conf.level <- NA


  res <- rbind(
    # "Phi Coeff." = c(Phi(x), NA, NA)
    "Contingency Coeff." = c(ContCoef(x),NA, NA)
  )

  if(is.na(conf.level)){
    res <- rbind(res, "Cramer V" = c(CramerV(x), NA, NA))
    res <- rbind(res, "Kendall Tau-b" = c(KendallTauB(x), NA, NA))
  } else {
    res <- rbind(res, "Cramer V" = CramerV(x, conf.level=conf.level))
    res <- rbind(res, "Kendall Tau-b" = c(KendallTauB(x, conf.level=conf.level)))
  }

  if(verbose=="3") {

    # # this is from boot::corr combined with ci logic from cor.test
    # r <- boot::corr(d=CombPairs(1:nrow(x), 1:ncol(x)), as.vector(x))
    
    # the boot::corr does not respect ordinal values in dimnames
    # so do it ourselves
    r <- TablePearson(x)
    
    r.ci <- CorCI(rho = r, n = sum(x), conf.level = conf.level)

    res <- rbind(res
      , "Goodman Kruskal Gamma" = GoodmanKruskalGamma(x, conf.level=conf.level)
      # , "Kendall Tau-b" = KendallTauB(x, conf.level=conf.level)
      , "Stuart Tau-c" = StuartTauC(x, conf.level=conf.level)
      , "Somers D C|R" = SomersDelta(x, direction="column", conf.level=conf.level)
      , "Somers D R|C" = SomersDelta(x, direction="r", conf.level=conf.level)
      #    , "Pearson Correlation" =c(cor.p$estimate, lwr.ci=cor.p$conf.int[1], upr.ci=cor.p$conf.int[2])
      , "Pearson Correlation" =c(r.ci[1], lwr.ci=r.ci[2], upr.ci=r.ci[3])
      , "Spearman Correlation" = SpearmanRho(x, conf.level=conf.level)
      , "Lambda C|R" = Lambda(x, direction="column", conf.level=conf.level)
      , "Lambda R|C" = Lambda(x, direction="row", conf.level=conf.level)
      , "Lambda sym" = Lambda(x, direction="sym", conf.level=conf.level)
      , "Uncertainty Coeff. C|R" = UncertCoef(x, direction="column", conf.level=conf.level)
      , "Uncertainty Coeff. R|C" = UncertCoef(x, direction="row", conf.level=conf.level)
      , "Uncertainty Coeff. sym" = UncertCoef(x, direction="sym", conf.level=conf.level)
      , "Mutual Information" = c(MutInf(x),NA,NA)
    ) }

  if(verbose=="3")
    dimnames(res)[[2]][1] <- "estimate"
  else
    dimnames(res)[[2]] <- c("estimate", "lwr.ci", "upr.ci")

  class(res) <- c("Assocs", class(res))
  return(res)

}


print.Assocs <- function(x, digits=4, ...){

  out <- apply(round(x, digits), 2, Format, digits=digits)

  if(nrow(x) == 3){

  } else {
    out[c(1,16), 2:3] <- "      -"
  }
  dimnames(out) <- dimnames(x)

  print(data.frame(out), quote=FALSE)
}




## This is an exact copy from Hmisc
## Changes since sent to statlib: improved printing N matrix in print.hoeffd

HoeffD <- function(x, y) {

  phoeffd <- function(d, n)  {

    d <- as.matrix(d); n <- as.matrix(n)
    b <- d + 1/36/n
    z <- .5*(pi^4)*n*b
    zz <- as.vector(z)
    zz[is.na(zz)] <- 1e30   # so approx won't bark

    tabvals <- c(5297,4918,4565,4236,3930,
                 3648,3387,3146,2924,2719,2530,2355,
                 2194,2045,1908,1781,1663,1554,1453,
                 1359,1273,1192,1117,1047,0982,0921,
                 0864,0812,0762,0716,0673,0633,0595,
                 0560,0527,0496,0467,0440,0414,0390,
                 0368,0347,0327,0308,0291,0274,0259,
                 0244,0230,0217,0205,0194,0183,0173,
                 0163,0154,0145,0137,0130,0123,0116,
                 0110,0104,0098,0093,0087,0083,0078,
                 0074,0070,0066,0063,0059,0056,0053,
                 0050,0047,0045,0042,0025,0014,0008,
                 0005,0003,0002,0001)/10000

    P <- ifelse(z<1.1 | z>8.5, pmax(1e-8,pmin(1,exp(.3885037-1.164879*z))),
                matrix(approx(c(seq(1.1, 5,by=.05),
                                seq(5.5,8.5,by=.5)),
                              tabvals, zz)$y,
                       ncol=ncol(d)))

    dimnames(P) <- dimnames(d)
    P
  }

  if(!missing(y))
    x <- cbind(x, y)

  x[is.na(x)] <- 1e30
  storage.mode(x) <-
    #   if(.R.)
    "double"
  #  else
  #    "single"

  p <- as.integer(ncol(x))
  if(p<1)
    stop("must have >1 column")

  n <- as.integer(nrow(x))
  if(n<5)
    stop("must have >4 observations")

  h <-
    #     if(.R.)
    .Fortran("hoeffd", x, n, p, hmatrix=double(p*p), aad=double(p*p),
             maxad=double(p*p), npair=integer(p*p),
             double(n), double(n),  double(n), double(n), double(n),
             PACKAGE="DescTools")
  #   else
  #     .Fortran("hoeffd", x, n, p, hmatrix=single(p*p), npair=integer(p*p),
  #              single(n), single(n),  single(n), single(n), single(n),
  #              single(n), integer(n))

  nam <- dimnames(x)[[2]]
  npair <- matrix(h$npair, ncol=p)
  aad <- maxad <- NULL
  # if(.R.) {
  aad <- matrix(h$aad, ncol=p)
  maxad <- matrix(h$maxad, ncol=p)
  dimnames(aad) <- dimnames(maxad) <- list(nam, nam)
  #  }
  h <- matrix(h$hmatrix, ncol=p)
  h[h>1e29] <- NA
  dimnames(h) <- list(nam, nam)
  dimnames(npair) <- list(nam, nam)
  P <- phoeffd(h, npair)
  diag(P) <- NA
  structure(list(D=30*h, n=npair, P=P, aad=aad, maxad=maxad), class="HoeffD")
}


print.HoeffD <- function(x, ...)
{
  cat("D\n")
  print(round(x$D,2))
  if(length(aad <- x$aad)) {
    cat('\navg|F(x,y)-G(x)H(y)|\n')
    print(round(aad,4))
  }
  if(length(mad <- x$maxad)) {
    cat('\nmax|F(x,y)-G(x)H(y)|\n')
    print(round(mad,4))
  }
  n <- x$n
  if(all(n==n[1,1]))
    cat("\nn=",n[1,1],"\n")
  else {
    cat("\nn\n")
    print(x$n)
  }

  cat("\nP\n")
  P <- x$P
  P <- ifelse(P<.0001,0,P)
  p <- format(round(P,4))
  p[is.na(P)] <- ""
  print(p, quote=FALSE)
  invisible()
}
AndriSignorell/DescTools documentation built on Nov. 11, 2024, 12:11 p.m.