#' Obtain the Grun HSC data
#'
#' Obtain the mouse haematopoietic stem cell single-cell RNA-seq data from Grun et al. (2016).
#'
#' @param ensembl Logical scalar indicating whether the output row names should contain Ensembl identifiers.
#' @param location Logical scalar indicating whether genomic coordinates should be returned.
#' @param legacy Logical scalar indicating whether to pull data from ExperimentHub.
#' By default, we use data from the gypsum backend.
#'
#' @details
#' Row metadata contains the symbol and chromosomal location for each gene.
#' Column metadata contains the extraction protocol used for each sample, as described in GSE76983.
#'
#' If \code{ensembl=TRUE}, the gene symbols are converted to Ensembl IDs in the row names of the output object.
#' Rows with missing Ensembl IDs are discarded, and only the first occurrence of duplicated IDs is retained.
#'
#' If \code{location=TRUE}, the coordinates of the Ensembl gene models are stored in the \code{\link{rowRanges}} of the output.
#' Note that this is only performed if \code{ensembl=TRUE}.
#'
#' All data are downloaded from ExperimentHub and cached for local re-use.
#' Specific resources can be retrieved by searching for \code{scRNAseq/grun-hsc}.
#'
#' @return A \linkS4class{SingleCellExperiment} object with a single matrix of UMI counts.
#'
#' @author Aaron Lun
#'
#' @references
#' Grun D et al. (2016).
#' De novo prediction of stem cell identity using single-cell transcriptome data.
#' \emph{Cell Stem Cell} 19(2), 266-277.
#'
#' @examples
#' sce <- GrunHSCData()
#'
#' @export
#' @importFrom SummarizedExperiment rowData rowData<- colData<-
#' @importFrom S4Vectors DataFrame
GrunHSCData <- function(ensembl=FALSE, location=TRUE, legacy=FALSE) {
if (!legacy) {
sce <- fetchDataset("grun-bone_marrow-2016", "2023-12-14", realize.assays=TRUE)
} else {
version <- "2.0.0"
sce <- .create_sce(file.path("grun-hsc", version), has.rowdata=FALSE, has.coldata=FALSE)
# Cleaning up the row data.
symbol <- sub("__.*", "", rownames(sce))
loc <- sub(".*__", "", rownames(sce))
rowData(sce) <- DataFrame(symbol=symbol, chr=loc)
# Cleaning up the col data.
cn <- colnames(sce)
sample <- sub("_.*", "", cn)
protocol <- ifelse(sample %in% c("JC4", "JC48P2", "JC48P4", "JC48P6", "JC48P7"),
"sorted hematopoietic stem cells", "micro-dissected cells")
colData(sce) <- DataFrame(sample=sample, protocol=protocol, row.names=cn)
}
.convert_to_ensembl(sce,
species="Mm",
symbols=rowData(sce)$symbol,
ensembl=ensembl,
location=location)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.