#-------------------------------------------------------------------------------
# Bob Rigby Mikis Stsinopoulos Marco Enea and Fernanda de Bastiani
# last change Monday, 10 August 2017
# the Double Binomial distribution
# needs C code to calculate the constance of summation
#------------------------------------------------------------------------------
# TO DO
# the cdf should be fixed
#
#-------------------------------------------------------------------------------
#
# dyn.load("~/Dropbox/gamlss/R-code/Distributions/double binomial marco/getBI_C2.so")
# is.loaded("getBI_C2")
# ------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
# numerical derivatives for logC
DBI <- function (mu.link = "logit", sigma.link = "log")
{
mstats <- checklink("mu.link", "Double Poisson", substitute(mu.link),
c("logit", "probit", "cloglog", "cauchit", "log", "own"))
dstats <- checklink("sigma.link", "Double Poisson", substitute(sigma.link),
c("inverse", "log", "identity", "sqrt"))
structure(
list( family = c("DBI", "Double Binomial"),
parameters = list(mu = TRUE,sigma = TRUE),
nopar = 2,
type = "Discrete",
mu.link = as.character(substitute(mu.link)),
sigma.link = as.character(substitute(sigma.link)),
mu.linkfun = mstats$linkfun,
sigma.linkfun = dstats$linkfun,
mu.linkinv = mstats$linkinv,
sigma.linkinv = dstats$linkinv,
mu.dr = mstats$mu.eta,
sigma.dr = dstats$mu.eta,
dldm = function(y, mu, sigma, bd)
{
y/(mu*sigma)-(bd-y)/((1-mu)*sigma)+as.vector(attr(numeric.deriv(GetBI_C(mu, sigma, bd), "mu"),"gradient"))
},
d2ldm2 = function(y, mu, sigma, bd)
{
dldm <- y/(mu*sigma)-(bd-y)/((1-mu)*sigma)+as.vector(attr(numeric.deriv(GetBI_C(mu, sigma, bd), "mu"),"gradient"))
d2ldm2 <- -dldm^2
d2ldm2 <- ifelse(d2ldm2 < -1e-15, d2ldm2,-1e-15)
d2ldm2
},
dldd = function(y, mu, sigma, bd)
{
logofy <- ifelse(y==0,1,log(y))
logofn_y <- ifelse(bd==y, 1,log(bd-y))
dldd <- (y*logofy)/sigma^2-(log(mu)*y)/sigma^2+(logofn_y*(bd-y))/sigma^2-
(log(1-mu)*(bd-y))/sigma^2-(bd*log(bd))/sigma^2+
as.vector(attr(numeric.deriv(GetBI_C(mu, sigma, bd), "sigma"),"gradient"))
dldd
},
d2ldd2 = function(y, mu, sigma, bd) {
logofy <- ifelse(y==0,1,log(y))
logofn_y <- ifelse(bd==y,1,log(bd-y))
dldd <- (y*logofy)/sigma^2-(log(mu)*y)/sigma^2+(logofn_y* (bd-y))/sigma^2-
(log(1-mu)*(bd-y))/sigma^2-(bd*log(bd))/sigma^2+
as.vector(attr(numeric.deriv(GetBI_C(mu, sigma, bd), "sigma"),"gradient"))
d2ldd2 <- -dldd^2
d2ldd2 <- ifelse(d2ldd2 < -1e-15, d2ldd2,-1e-15)
d2ldd2
}, #change this
d2ldmdd = function(y) rep(0,length(y)),
G.dev.incr = function(y, mu, sigma, bd,...) -2*dDBI(y, mu, sigma, bd, log = TRUE),
rqres = expression(
rqres(pfun="pDBI", type="Discrete", ymin=0, bd=bd, y=y, mu=mu, sigma=sigma)
),
mu.initial = expression({mu <- (y + 0.5)/(bd + 1)}),
sigma.initial = expression(sigma <- rep(1.1,length(y))),
mu.valid = function(mu) all(mu > 0) && all(mu < 1),
sigma.valid = function(sigma) all(sigma > 0),
y.valid = function(y) all(y >= 0)
),
class = c("gamlss.family","family"))
}
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
# C function in R for checking
# getBI1_C <- function( mu, sigma, bd)
# {
# ly <- max(length(bd),length(mu),length(sigma))
# bd <- rep(bd, length = ly)
# sigma <- rep(sigma, length = ly)
# mu <- rep(mu, length = ly)
# theC <- rep(0, ly)
# for (i in 1:ly)
# {
# x <- 0:bd[i]
# logofx <- ifelse(x==0,1,log(x))
# logofbd_x <- ifelse(bd[i]==x,1,log(bd[i]-x))
# ss <- lchoose(bd[i],x)+x*logofx+(bd[i]-x)*logofbd_x-bd[i]*log(bd[i])+
# bd[i]*sigma[i]*log(bd[i]) + sigma[i]*x*log(mu[i])+sigma[i]*(bd[i]-x)*log(1-mu[i])-
# sigma[i]*x*logofx - sigma[i]*(bd[i]-x)*logofbd_x
# expss <- exp(ss)
# theC[i] <- log(1/sum(expss))
# }
# theC
# }
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
# the C function calling C-code
# Note that the original parametrization of sigma was 1/sigma
# That is the C(mu, sigma, n) function was writted for
# 1/sigma so we have to inverse sigma here
# the function returns res=-log(C)=1/log(C)
GetBI_C <- function(mu, sigma, bd)
{
ly <- max(length(bd),length(mu),length(sigma))
bd <- rep(bd, length = ly)
sigma <- rep(1/sigma, length = ly)# inverse sigma
mu <- rep(mu, length = ly)
TheC <- .C("getBI_C2",as.double(mu),as.double(sigma),as.double(bd),
as.integer(ly), theC=double(ly))$theC
TheC
}
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
# the d function
#-------------------------------------------------------------------------------
dDBI <- function(x, mu = .5, sigma = 1, bd=2, log = FALSE)
{
if (any(mu < 0) | any(mu > 1)) stop(paste("mu must be between 0 and 1", "\n", ""))
if (any(x < 0) ) stop(paste("x must be >=0", "\n", ""))
if (any(bd < x)) stop(paste("x must be <= than the binomial denominator", bd, "\n"))
if (any(sigma <= 0)) stop(paste("sigma must be positive", "\n", ""))
if (any(sigma < 1e-10)) warning(" values of sigma in BB less that 1e-10 are set to 1e-10" )
ly <- max(length(x),length(bd),length(mu),length(sigma))
x <- rep(x, length = ly)
bd <- rep(bd, length = ly)
sigma <- rep(sigma, length = ly)
mu <- rep(mu, length = ly)
logofx <- ifelse(x==0,1,log(x))
logofbd_x <- ifelse(bd==x,1,log(bd-x))
res <- GetBI_C(mu,sigma,bd)# res=-log(C)=1/log(C)
ll <- ifelse((abs(sigma-1) < 0.001), dbinom(x, size = bd, prob = mu, log = TRUE),
lchoose(bd,x)+x*logofx+(bd-x)*logofbd_x-bd*log(bd)+
(bd/sigma)*log(bd) + (x/sigma)*log(mu)+((bd-x)/sigma)*log(1-mu)-
(x/sigma)*logofx - ((bd-x)/sigma)*logofbd_x+res)
if(log==FALSE) fy <- exp(ll) else fy <- ll
fy
}
#-------------------------------------------------------------------------------
# The p function
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
pDBI<-function(q, mu = .5, sigma = 1, bd=2, lower.tail = TRUE, log.p = FALSE)
{
if (any(mu < 0) | any(mu > 1)) stop(paste("mu must be between 0 and 1", "\n", ""))
if (any(sigma <= 0) ) stop(paste("sigma must be greater than 0 ", "\n", ""))
if (any(q < 0) ) stop(paste("q must be >=0", "\n", ""))
ly <- max(length(q),length(mu),length(sigma))
q <- rep(q, length = ly)
sigma <- rep(sigma, length = ly)
mu <- rep(mu, length = ly)
bd <- rep(bd, length = ly)
# ly <- length(q)
# FFF <- rep(0,ly)
# nsigma <- rep(sigma, length = ly)
# nmu <- rep(mu, length = ly)
# nbd <- rep(bd, length = ly)
# j <- seq(along=q)
# for (i in j)
# {
# y.y <- q[i]
# nn <- bd[i]
# mm <- mu[i]
# nsig <- sigma[i]
# allval <- seq(0,y.y)
# pdfall <- dDBI(allval, mu = mm, sigma = nsig, bd = nn, log = FALSE)
# FFF[i] <- sum(pdfall)
# }
# cdf <- FFF
fn <- function(q, mu, sigma, bd) sum(dDBI(0:q, mu=mu, sigma=sigma, bd=bd))
Vcdf <- Vectorize(fn)
cdf <- Vcdf(q=q, mu=mu, sigma=sigma, bd=bd)
cdf <- if(lower.tail==TRUE) cdf else 1-cdf
cdf <- if(log.p==FALSE) cdf else log(cdf)
cdf
}
#-------------------------------------------------------------------------------
# the q function
#-------------------------------------------------------------------------------
qDBI <- function(p, mu = .5, sigma = 1, bd=2, lower.tail = TRUE, log.p = FALSE )
{
if (any(mu < 0) | any(mu > 1)) stop(paste("mu must be between 0 and 1", "\n", ""))
if (any(sigma <= 0) ) stop(paste("sigma must be greater than 0 ", "\n", ""))
if (any(p < 0) | any(p > 1.0001)) stop(paste("p must be between 0 and 1", "\n", ""))
if (log.p==TRUE) p <- exp(p) else p <- p
if (lower.tail==TRUE) p <- p else p <- 1-p
ly <- max(length(p),length(mu),length(sigma))
p <- rep(p, length = ly)
sigma <- rep(sigma, length = ly)
mu <- rep(mu, length = ly)
bd <- rep(bd, length = ly)
QQQ <- rep(0,ly)
nsigma <- rep(sigma, length = ly)
nmu <- rep(mu, length = ly)
for (i in seq(along=p))
{
cumpro <- 0
if (p[i]+0.000000001 >= 1) {QQQ[i] <- bd[i]}
else
{
for (j in seq(from = 0, to = bd[i]))
{
cumpro <- pDBI(j, mu = mu[i], sigma = sigma[i], bd=bd[i], log.p = FALSE)
# else cumpro+dSICHEL(j, mu = nmu[i], sigma = nsigma[i], nu = nnu[i], log = FALSE)# the above is faster
QQQ[i] <- j
if (p[i] <= cumpro ) break
}
}
}
QQQ
}
#-------------------------------------------------------------------------------
# the r function
#-------------------------------------------------------------------------------
rDBI <- function(n,mu = .5, sigma = 1, bd=2)
{
if (any(mu < 0) | any(mu > 1)) stop(paste("mu must be between 0 and 1", "\n", ""))
if (any(sigma <= 0) ) stop(paste("sigma must be greater than 0 ", "\n", ""))
if (any(n <= 0)) stop(paste("n must be a positive integer", "\n", ""))
n <- ceiling(n)
p <- runif(n)
r <- qDBI(p, mu=mu, sigma=sigma, bd = bd )
r
}
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.