# Created bt Mikis Stasinopoulos and Bob Rigby
# May 2017
# Zero adjusted Sichel
#----------------------------------------------------------------------------------------
ZASICHEL <-function (mu.link ="log", sigma.link="log", nu.link="identity", tau.link = "logit")
{
mstats <- checklink("mu.link", "zaSICHEL", substitute(mu.link),
c("1/mu^2", "log", "identity"))
dstats <- checklink("sigma.link", "zaSICHEL", substitute(sigma.link),
c("inverse", "log", "identity"))
vstats <- checklink("nu.link", "zaSICHEL",substitute(nu.link),
c("1/nu^2", "log", "identity"))
tstats <- checklink("tau.link", "zaSICHEL", substitute(tau.link),
c("logit", "probit", "cloglog", "log", "own"))
structure(
list(family = c("ZASICHEL", "zero adjusted Sichel"),
parameters = list(mu = TRUE, sigma = TRUE, nu = TRUE, tau=TRUE),
nopar = 4,
type = "Discrete",
mu.link = as.character(substitute(mu.link)),
sigma.link = as.character(substitute(sigma.link)),
nu.link = as.character(substitute(nu.link)),
tau.link = as.character(substitute(tau.link)),
mu.linkfun = mstats$linkfun,
sigma.linkfun = dstats$linkfun,
nu.linkfun = vstats$linkfun,
tau.linkfun = tstats$linkfun,
mu.linkinv = mstats$linkinv,
sigma.linkinv = dstats$linkinv,
nu.linkinv = vstats$linkinv,
tau.linkinv = tstats$linkinv,
mu.dr = mstats$mu.eta,
sigma.dr = dstats$mu.eta,
nu.dr = vstats$mu.eta,
tau.dr = tstats$mu.eta,
dldm = function(y,mu,sigma,nu,tau)
{
dldm0 <- SICHEL()$dldm(y,mu,sigma,nu) + dSICHEL(0, mu,sigma,nu)*SICHEL()$dldm(0,mu,sigma,nu)/(1-dSICHEL(0,mu,sigma,nu))
dldm <- ifelse(y==0, 0 , dldm0)
dldm },
d2ldm2 = function(y,mu,sigma,nu,tau)
{
#dldm0 <- NBI()$dldm(y,mu,sigma) + dNBI(0 ,mu,sigma)* NBI()$dldm(0,mu,sigma )/(1- dNBI(0,mu,sigma ))
dldm0 <- SICHEL()$dldm(y,mu,sigma,nu) + dSICHEL(0, mu,sigma,nu)*SICHEL()$dldm(0,mu,sigma,nu)/(1-dSICHEL(0,mu,sigma,nu))
dldm <- ifelse(y==0, 0 , dldm0)
d2ldm2 <- -dldm*dldm
d2ldm2 <- ifelse(d2ldm2 < -1e-15, d2ldm2,-1e-15)
d2ldm2},
dldd = function(y,mu,sigma,nu,tau)
{
sigma <- ifelse(sigma<0.000001, 0.000001, sigma )
dldd0 <- SICHEL()$dldd(y,mu,sigma, nu) + dSICHEL(0,mu,sigma,nu)*SICHEL()$dldd(0,mu,sigma, nu)/(1-dSICHEL(0,mu,sigma, nu))
dldd <- ifelse(y==0, 0 , dldd0)
dldd },
d2ldd2 = function(y,mu,sigma,nu, tau)
{
sigma <- ifelse(sigma<0.000001, 0.000001, sigma )
dldd0 <- SICHEL()$dldd(y,mu,sigma, nu) + dSICHEL(0,mu,sigma,nu)*SICHEL()$dldd(0,mu,sigma, nu)/(1-dSICHEL(0,mu,sigma, nu))
dldd <- ifelse(y==0, 0 , dldd0)
d2ldd2 <- -dldd*dldd
d2ldd2 <- ifelse(d2ldd2 < -1e-15, d2ldd2,-1e-15)
d2ldd2 },
dldv = function(y,mu,sigma,nu, tau)
{
nd <- numeric.deriv(dZASICHEL(y, mu, sigma, nu, tau, log=TRUE), "nu", delta=0.001)
dldv <- as.vector(attr(nd, "gradient"))
dldv },
d2ldv2 = function(y,mu,sigma,nu, tau){
nd <- numeric.deriv(dZASICHEL(y, mu, sigma, nu, tau, log=TRUE), "nu", delta=0.001)
dldv <- as.vector(attr(nd, "gradient"))
d2ldv2 <- -dldv*dldv
d2ldv2 <- ifelse(d2ldv2 < -1e-15, d2ldv2,-1e-15)
d2ldv2 },
dldt = function(y,mu,sigma,nu, tau)
{
#cat("at tau ", mu[1], sigma[1], nu[1], tau[1], "\n")
dldt <- ifelse(y==0, 1/tau, -1/(1-tau))
dldt },
d2ldt2 = function(y,mu,sigma,nu, tau){
d2ldt2 <- -1/(tau*(1-tau))# or -1/((1-tau)^2)
d2ldt2 <- ifelse(d2ldt2 < -1e-15, d2ldt2,-1e-15)
d2ldt2},
d2ldmdd = function(y,mu,sigma,nu, tau) #1
{
dldm0 <- (1-tau)*((tau+(1-tau)*dSICHEL(0,mu,sigma,nu))^(-1))*dSICHEL(0,mu,sigma,nu)*SICHEL()$dldm(0,mu,sigma,nu)
dldm <- ifelse(y==0, dldm0, SICHEL()$dldm(y,mu,sigma,nu))
dldd0 <- (1-tau)*((tau+(1-tau)*dSICHEL(0,mu,sigma,nu))^(-1))*dSICHEL(0,mu,sigma,nu)*SICHEL()$dldd(0,mu,sigma,nu)
dldd <- ifelse(y==0, dldd0, SICHEL()$dldd(y,mu,sigma,nu))
d2ldmdd <- -dldm *dldd
d2ldmdd <- ifelse( d2ldmdd < -1e-15, d2ldmdd,-1e-15)
d2ldmdd },
d2ldmdv = function(y, mu, sigma, nu, tau) # 2
{
dldm0 <- (1-tau)*((tau+(1-tau)*dSICHEL(0,mu,sigma,nu))^(-1))*dSICHEL(0,mu,sigma,nu)*SICHEL()$dldm(0,mu,sigma,nu)
dldm <- ifelse(y==0, dldm0, SICHEL()$dldm(y,mu,sigma,nu))
nd <- numeric.deriv(dSICHEL(y, mu, sigma, nu, log=TRUE), "nu", delta=0.001)
dldv <- as.vector(attr(nd, "gradient"))
d2ldmdv <- -dldm *dldv
d2ldmdv <- ifelse(d2ldmdv < -1e-15, d2ldmdv,-1e-15)
d2ldmdv },
d2ldmdt = function(y, mu, sigma, nu, tau) # 3
{
dldm0 <- (1-tau)*((tau+(1-tau)*dSICHEL(0,mu,sigma,nu))^(-1))*dSICHEL(0,mu,sigma,nu)*SICHEL()$dldm(0,mu,sigma,nu)
dldm <- ifelse(y==0, dldm0, SICHEL()$dldm(y,mu,sigma,nu))
dldt0 <- ((tau+(1-tau)*dSICHEL(0,mu,sigma, nu))^(-1))*(1-dSICHEL(0,mu,sigma, nu))
dldt <- ifelse(y==0, dldt0, -1/(1-tau))
d2ldmdt <- -dldm *dldt
d2ldmdt <- ifelse(d2ldmdt < -1e-15, d2ldmdt,-1e-15)
d2ldmdt },
d2ldddv = function(y,mu,sigma,nu,tau) # 4
{
dldd0 <- (1-tau)*((tau+(1-tau)*dSICHEL(0,mu,sigma,nu))^(-1))*dSICHEL(0,mu,sigma,nu)*SICHEL()$dldd(0,mu,sigma,nu)
dldd <- ifelse(y==0, dldd0, SICHEL()$dldd(y,mu,sigma,nu))
nd <- numeric.deriv(dZASICHEL(y, mu, sigma, nu, tau, log=TRUE), "nu", delta=0.001)
dldv <- as.vector(attr(nd, "gradient"))
d2ldddv <- -dldd *dldv
d2ldddv <- ifelse(d2ldddv < -1e-15, d2ldddv,-1e-15)
d2ldddv },
d2ldddt = function(y,mu,sigma,nu,tau) # 5
{
dldd0 <- (1-tau)*((tau+(1-tau)*dSICHEL(0,mu,sigma,nu))^(-1))*dSICHEL(0,mu,sigma,nu)*SICHEL()$dldd(0,mu,sigma,nu)
dldd <- ifelse(y==0, dldd0, SICHEL()$dldd(y,mu,sigma,nu))
dldt0 <- ((tau+(1-tau)*dSICHEL(0,mu,sigma, nu))^(-1))*(1-dSICHEL(0,mu,sigma, nu))
dldt <- ifelse(y==0, dldt0, -1/(1-tau))
d2ldddt <- -dldd *dldt
d2ldddt <- ifelse(d2ldddt < -1e-15, d2ldddt,-1e-15)
d2ldddt },
d2ldvdt = function(y,mu,sigma,nu,tau) # 6
{
nd <- numeric.deriv(dSICHEL(y, mu, sigma, nu, log=TRUE), "nu", delta=0.001)
dldv <- as.vector(attr(nd, "gradient"))
dldt0 <- ((tau+(1-tau)*dSICHEL(0,mu,sigma, nu))^(-1))*(1-dSICHEL(0,mu,sigma, nu))
dldt <- ifelse(y==0, dldt0, -1/(1-tau))
d2ldvdt <- -dldv *dldt
d2ldvdt <- ifelse(d2ldvdt < -1e-15, d2ldvdt,-1e-15)
d2ldvdt },
G.dev.incr = function(y,mu,sigma,nu, tau,...) -2*dZASICHEL(y, mu, sigma, nu, tau, log=TRUE),
rqres = expression(
rqres(pfun="pZASICHEL", type="Discrete", ymin=0, y=y, mu=mu, sigma=sigma, nu=nu)
),
mu.initial = expression(mu<- (y+mean(y))/2 ),
sigma.initial = expression(
sigma <- rep( max( ((var(y)-mean(y))/(mean(y)^2)),0.1),length(y))),
nu.initial = expression({ nu <- rep(-0.5,length(y)) }),
tau.initial = expression({ tau <- rep(sum(y==0)/length(y),length(y))}),
mu.valid = function(mu) all(mu > 0) ,
sigma.valid = function(sigma) all(sigma > 0),
nu.valid = function(nu) TRUE,
tau.valid = function(nu) all(nu > 0 & nu < 1),
y.valid = function(y) all(y >= 0),
mean = function(mu, sigma, nu, tau)
{
p0 <- dSICHEL(0, mu, sigma, nu)
c <- (1 - tau) / (1 - p0)
return( mu * c)
},
variance = function(mu, sigma, nu, tau)
{
K1 <- besselK(1 / sigma, nu +1)
K2 <- besselK(1 / sigma, nu)
b <- K1 / K2
p0 <- dSICHEL(0, mu, sigma, nu)
c <- (1 - tau) / (1 - p0)
h1 <- 1 / c * (2 * sigma * (nu + 1) / b + 1 / b^2) - 1
return(c * mu + c^2 * mu^2 * h1)
}
),
class = c("gamlss.family","family"))
}
#----------------------------------------------------------------------------------------
#------------------------------------------------------------------------------------------
#------------------------------------------------------------------------------------------
dZASICHEL<-function(x, mu=1, sigma=1, nu=-0.5, tau=0.1, log=FALSE)
{
if (any(mu <= 0) ) stop(paste("mu must be greater than 0 ", "\n", ""))
if (any(sigma <= 0) ) stop(paste("sigma must be greater than 0 ", "\n", ""))
if (any(tau <= 0)|any(tau >= 1)) stop(paste("tau must be between 0 and 1 ", "\n", ""))
if (any(x < 0) ) stop(paste("x must be >=0", "\n", ""))
ly <- max(length(x),length(mu),length(sigma),length(nu),length(tau))
x <- rep(x, length = ly)
sigma <- rep(sigma, length = ly)
mu <- rep(mu, length = ly)
nu <- rep(nu, length = ly)
tau <- rep(tau, length = ly)
fy0 <- dSICHEL(0, mu = mu, sigma=sigma, nu=nu)
fy <- dSICHEL(x, mu = mu, sigma=sigma, nu=nu, log = TRUE)
logfy <- rep(0, length(x))
logfy <- ifelse((x==0), log(tau), log(1-tau) + fy - log(1-fy0))
if(log == FALSE) fy2 <- exp(logfy) else fy2 <- logfy
fy2
}
#----------------------------------------------------------------------------------------
#-----------------------------------------------
pZASICHEL <- function(q, mu=1, sigma=1, nu=-0.5, tau=0.1, lower.tail = TRUE, log.p = FALSE)
{
if (any(mu <= 0) ) stop(paste("mu must be greater than 0 ", "\n", ""))
if (any(sigma <= 0) ) stop(paste("sigma must be greater than 0 ", "\n", ""))
if (any(tau <= 0)|any(tau >= 1)) #In this parametrization nu = alpha
stop(paste("tau must be between 0 and 1 ", "\n", ""))
if (any(q < 0) ) stop(paste("y must be >=0", "\n", ""))
ly <- max(length(q),length(mu),length(sigma),length(nu),length(tau))
q <- rep(q, length = ly)
sigma <- rep(sigma, length = ly)
mu <- rep(mu, length = ly)
nu <- rep(nu, length = ly)
tau <- rep(tau, length = ly)
cdf0 <- pSICHEL(0, mu = mu, sigma=sigma, nu=nu)
cdf1 <- pSICHEL(q, mu = mu, sigma=sigma, nu=nu)
cdf3 <- tau+((1-tau)*(cdf1-cdf0)/(1-cdf0))
cdf <- ifelse((q==0),tau, cdf3)
if(lower.tail == TRUE) cdf <- cdf else cdf <-1-cdf
if(log.p==FALSE) cdf <- cdf else cdf <- log(cdf)
cdf
}
#----------------------------------------------------------------------------------------
qZASICHEL <- function(p, mu=1, sigma=1, nu=-0.5, tau=0.1, lower.tail = TRUE,
log.p = FALSE, max.value=10000)
{
if (any(mu <= 0) ) stop(paste("mu must be greater than 0 ", "\n", ""))
if (any(sigma <= 0) ) stop(paste("sigma must be greater than 0 ", "\n", ""))
if (any(tau <= 0)|any(tau >= 1)) #In this parametrization nu = alpha
stop(paste("tau must be between 0 and 1 ", "\n", ""))
if (any(p < 0) | any(p > 1)) stop(paste("p must be between 0 and 1", "\n", ""))
if (log.p == TRUE) p <- exp(p) else p <- p
if (lower.tail == TRUE) p <- p else p <- 1 - p
ly <- max(length(p),length(mu),length(sigma),length(nu),length(tau))
p <- rep(p, length = ly)
sigma <- rep(sigma, length = ly)
mu <- rep(mu, length = ly)
nu <- rep(nu, length = ly)
tau <- rep(tau, length = ly)
pnew <- (p-tau)/(1-tau)-1e-10
cdf0 <- pSICHEL(0, mu = mu, sigma=sigma, nu=nu)
pnew2 <- cdf0*(1-pnew) + pnew
pnew2 <- ifelse((pnew2 > 0 ),pnew2, 0)
q <- qSICHEL(pnew2, mu = mu, sigma=sigma, nu=nu, max.value= max.value)
q
}
#----------------------------------------------------------------------------------------
rZASICHEL <- function(n, mu=1, sigma=1, nu=-0.5, tau=0.1, max.value=10000)
{
if (any(mu <= 0) ) stop(paste("mu must be greater than 0 ", "\n", ""))
if (any(sigma <= 0) ) stop(paste("sigma must be greater than 0 ", "\n", ""))
if (any(tau <= 0)|any(tau >= 1)) #In this parametrization nu = alpha
stop(paste("tau must be between 0 and 1 ", "\n", ""))
if (any(n <= 0)) stop(paste("n must be a positive integer", "\n", ""))
n <- ceiling(n)
p <- runif(n)
r <- qZASICHEL(p, mu=mu, sigma=sigma, nu=nu, tau=tau, max.value= max.value)
r
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.