R/loom.R

Defines functions get_cluster_dgem_by_name get_cell_mask_by_cluster_name get_regulon_thresholds get_regulons get_regulons_AUC get_cell_annotation get_cluster_dgem_by_name list_clusterings_names get_all_cluster_markers get_cluster_markers get_cell_mask_by_cluster_name get_clusterings_with_name get_clustering_by_id get_clusterings get_cluster_info_by_cluster_name get_clustering_idx_by_cluster_name get_all_clustering_annotations get_default_embedding get_embedding_by_name get_dgem get_genes get_cell_ids is_json is_gzipped is_base64_encoded get_dspace get_dtype chunk_points hdf5_utf8_encode decompress_gzb64 compress_gzb64 is_order_conserved check_missings convert_to_loom_v3_spec open_loom lookup_loom build_loom close_loom finalize flush add_matrix add_col_attr update_col_attr remove_col_attr get_col_attr_by_key col_attrs_exists_by_key add_row_attr update_row_attr remove_row_attr get_row_attr_by_key add_global_attr get_global_attr remove_global_attr update_global_attr lookup_all_global_attr add_annotation_by_cluster_annotation_mapping_df add_fbgn add_clustering_markers add_regulons_AUC add_regulons get_clustering_annotations get_embeddings add_annotated_clustering clusters_as_factor_ids add_clustering create_cluster_annotation append_clustering_update_ca add_seurat_clustering get_seurat_clustering_resolutions get_unique_clusters create_trajectory create_trajectory_from_monocle create_trajectory_from_dyno add_embedding get_next_embedding_id add_default_embedding add_embedding_from_dyno clear_global_meta_data init_global_meta_data update_global_meta_data get_global_meta_data load_global_meta_data global_meta_data_exists check_global_meta_data add_global_md_regulon_thresholds update_cluster_descriptions_by_cluster_annotation_mapping_df add_global_md_clustering add_global_md_clustering_kv get_global_md_clustering_info_by_name get_global_md_clustering_by_name get_global_md_clustering_by_id get_cluster_names get_cluster_info_by_id get_global_md_clusterings add_global_md_embedding init_global_md_embeddings add_global_md_annotation add_global_md_metric add_global_loom_spec_version get_global_loom_spec_version is_loom_spec_version_3_or_greater hierarchy_exists add_hierarchy create_hierarchy

Documented in add_annotated_clustering add_annotation_by_cluster_annotation_mapping_df add_clustering add_clustering_markers add_col_attr add_default_embedding add_embedding add_embedding_from_dyno add_fbgn add_global_attr add_global_md_annotation add_global_md_clustering add_global_md_clustering_kv add_global_md_embedding add_global_md_metric add_global_md_regulon_thresholds add_hierarchy add_matrix add_regulons add_regulons_AUC add_row_attr add_seurat_clustering append_clustering_update_ca build_loom check_global_meta_data check_missings chunk_points clear_global_meta_data close_loom col_attrs_exists_by_key compress_gzb64 convert_to_loom_v3_spec create_cluster_annotation create_hierarchy create_trajectory create_trajectory_from_dyno create_trajectory_from_monocle decompress_gzb64 finalize flush get_all_cluster_markers get_cell_annotation get_cell_ids get_cell_mask_by_cluster_name get_cluster_dgem_by_name get_cluster_info_by_cluster_name get_cluster_info_by_id get_clustering_by_id get_clustering_idx_by_cluster_name get_clusterings get_clusterings_with_name get_cluster_markers get_cluster_names get_col_attr_by_key get_default_embedding get_dgem get_dspace get_dtype get_embedding_by_name get_embeddings get_genes get_global_attr get_global_md_clustering_by_id get_global_md_clustering_by_name get_global_md_clustering_info_by_name get_global_meta_data get_next_embedding_id get_regulons get_regulons_AUC get_regulon_thresholds get_row_attr_by_key get_seurat_clustering_resolutions global_meta_data_exists hdf5_utf8_encode hierarchy_exists init_global_md_embeddings init_global_meta_data is_base64_encoded is_gzipped is_json is_order_conserved list_clusterings_names lookup_all_global_attr lookup_loom open_loom remove_col_attr remove_global_attr remove_row_attr update_cluster_descriptions_by_cluster_annotation_mapping_df update_col_attr update_global_attr update_global_meta_data update_row_attr

# loom.R
# 

#*******************# #
# Constants                 ---- 
#*******************# #

# Column attributes
CA_CELLID <- "CellID"
CA_DFLT_CLUSTERS_NAME <- "ClusterName"
CA_DFLT_CLUSTERS_ID <- "ClusterID"
CA_EMBEDDING_NAME <- "Embedding"
CA_EMBEDDING_DFLT_CNAMES <- c("_X","_Y")
CA_EXTRA_EMBEDDINGS_X_NAME <- "Embeddings_X"
CA_EXTRA_EMBEDDINGS_Y_NAME <- "Embeddings_Y"
CA_EXTRA_EMBEDDINGS_NAMES <- c(CA_EXTRA_EMBEDDINGS_X_NAME, CA_EXTRA_EMBEDDINGS_Y_NAME)
CA_CLUSTERINGS_NAME <- "Clusterings"
# CA_REGULONS_AUC <- "RegulonsAUC" # Deprecated?

# Row attributes
RA_CLUSTERING_MARKERS_NAME <- "ClusterMarkers"
RA_GENE_NAME <- "Gene"
# RA_REGULONS <- "Regulons"# Deprecated?

# Global attributes
GA_METADATA_NAME <- "MetaData"
GA_METADATA_ANNOTATIONS_NAME <- "annotations"
GA_METADATA_METRICS_NAME <- "metrics"
GA_METADATA_CLUSTERINGS_NAME <- "clusterings"
GA_METADATA_EMBEDDINGS_NAME <- "embeddings"
GA_METADATA_CLUSTERINGS_CLUSTER_MARKER_METRICS_NAME <- "clusterMarkerMetrics"
GA_TITLE_NAME <- "title"
GA_TITLE_GENOME <- "Genome"
GA_CREATION_DATE_NAME <- "CreationDate"
GA_R_VERSION_NAME <- "RVersion"
GA_LOOM_SPEC_VERSION <- "LOOM_SPEC_VERSION"

# Miscellaneous
BASE64_PATTERN <- "^([A-Za-z0-9+/]{4})*([A-Za-z0-9+/]{3}=|[A-Za-z0-9+/]{2}==)?$"

#*******************#
#*******************#
#  DATA INSERTION   #
#*******************#
#*******************#

#*******************#
# Global attribute data functions ----
#*******************#

#'@title create_hierarchy
#'@description      Create hierarchy as named list of tree levels (SCopeTreeL1, SCopeTreeL2, SCopeTreeL3)
#'@param level.1.name  Name of top level of the hierarchy.
#'@param level.2.name  Name of the second level of the hierarchy.
#'@param level.3.name  Name of the third level of the hierarchy.
#'@export
create_hierarchy <- function(
  level.1.name = NULL,
  level.2.name = NULL,
  level.3.name = NULL
) {
  if(is.null(x = level.1.name))
    stop("You need to define at least the first level when creating a hierarchy.")
  if(is.null(x = level.2.name) && !is.null(x = level.3.name))
    stop("You cannot define the third level while the second level is not defined.")
  if(is.null(x = level.1.name))
    level.1.name<-""
  if(is.null(x = level.2.name))
    level.2.name<-""
  if(is.null(x = level.3.name))
    level.3.name<-""
  return (
    list(
      "SCopeTreeL1"=level.1.name,
      "SCopeTreeL2"=level.2.name,
      "SCopeTreeL3"=level.3.name
    )
  )
}

#'@title add_hierarchy
#'@description      Add a 3-level hierarchy as global attributes to the given loom.
#'@param loom       The loom file handler.
#'@param hierarchy  A named list of the 3-levels names. Use create_hierarchy() to build it.
#'@export
add_hierarchy <- function(
  loom,
  hierarchy,
  overwrite = FALSE
) {
  if(loom$mode=="r") stop("File open as read-only.")
  he <- hierarchy_exists(loom = loom)
  if(he && !overwrite) {
    stop("Hierarchy already exists for the given loom. You can overwrite the hierarchy in the given loom by the given hierarchy by setting overwrite option to TRUE.")
  }
  for(idx in seq_along(along.with = hierarchy)) {
    if(!he | !overwrite) {
      add_global_attr(
        loom = loom,
        key = names(x = hierarchy)[idx],
        value = hierarchy[[idx]]
      )
    } else {
      update_global_attr(
        loom = loom,
        key = names(x = hierarchy)[idx],
        value = hierarchy[[idx]]
      )
    }
  }
}

#'@title hierarchy_exists
#'@description  Check if hierarchy exists for the given loom.
#'@param loom   The loom file handler.
#'@export
hierarchy_exists <- function(
  loom
) {
  if(is_loom_spec_version_3_or_greater(loom = loom))
    return(
      loom$link_exists(name = paste0("attrs/", "SCopeTreeL1"))
      | loom$link_exists(name = paste0("attrs/", "SCopeTreeL2"))
      | loom$link_exists(name = paste0("attrs/", "SCopeTreeL3"))
    )
  return (
    loom$attr_exists(attr_name = "SCopeTreeL1") 
    | loom$attr_exists(attr_name = "SCopeTreeL2") 
    | loom$attr_exists(attr_name = "SCopeTreeL3")
    )
}

#*******************#
# Global Meta data functions ---- 
#*******************#

is_loom_spec_version_3_or_greater <- function(loom) {
  return (get_global_loom_spec_version(loom = loom) >= 3)
}

get_global_loom_spec_version <- function(loom) {
  if(loom$link_exists(name = "attrs")) {
    loom.spec.version <- loom[["attrs"]][[GA_LOOM_SPEC_VERSION]][]
    if(loom.spec.version < 3)
      stop(paste0("Corrupted loom file: expecting LOOM_SPEC_VERSION 3 but it's different (",loom.spec.version,") !"))
    return (loom.spec.version)
  } else {
    # If not exists, add attribute
    if(GA_LOOM_SPEC_VERSION %in% list.attributes(object = loom)) {
      loom.spec.version <- h5attr(x=loom, which=GA_LOOM_SPEC_VERSION)
    } else {
      tryCatch(
          {
            warning("LOOM_SPEC_VERSION attribute not detected. This loom file has probably been generated SCopeLoomR version < 0.6.0. 
                Adding this attribute to the loom file to follow Loompy standards...")
            h5attr(x=loom, which=GA_LOOM_SPEC_VERSION) <- "2.0.0"
            # add_global_loom_spec_version(loom=loom, loom.spec.version=2) # why not this?
          },
          error = function(e) {
            e$message <- paste0("It was not possible to update the attribute. Maybe the file is open in mode 'read-only'? (mode='r')\n", 
                                e$message)
            stop(e)
          }
        )
      loom.spec.version <- h5attr(x=loom, which=GA_LOOM_SPEC_VERSION)
    }
    if(loom.spec.version >= 3)
      stop(paste0("Corrupted loom file: expecting LOOM_SPEC_VERSION 2 but it's different (",loom.spec.version,") !"))
    return (loom.spec.version)
  }
}

add_global_loom_spec_version <- function(
  loom,
  loom.spec.version
) {
  dtype <- guess_dtype(x = "foo")
  # Encode character vector to UTF-8
  dtype <- hdf5_utf8_encode(
    value = "foo",
    dtype = dtype
  )
  if(loom.spec.version == 3) {
    loom$create_dataset(
      name = paste0("attrs/", GA_LOOM_SPEC_VERSION),
      robj = "3.0.0",
      dtype = dtype,
      space = get_dspace(x = "scalar"),
      chunk_dims = NULL
    )
  } else if(loom.spec.version == 2) {
    loom$create_attr(
      attr_name = GA_LOOM_SPEC_VERSION,
      robj = "2.0.0",
      dtype = dtype,
      space = get_dspace(x = "scalar")
    ) 
  } else {
    stop("Invalid loom.spec.version!")
  }
}

#'@title add_global_md_metric
#'@description  Add the metric with the given name to the global MetaData attribute.
#'@param loom   The loom file handler.
#'@param name   The name of the annotation.
#'@param values The values of the annotation to be added.
add_global_md_metric <- function(
  loom,
  name
) {
  if(loom$mode=="r") stop("File open as read-only.")
  gmd <- get_global_meta_data(loom = loom)
  a <- gmd[[GA_METADATA_METRICS_NAME]]
  a[[length(a)+1]] <- list(name = name)
  gmd[[GA_METADATA_METRICS_NAME]] <- NULL
  gmd[[GA_METADATA_METRICS_NAME]] <- a
  update_global_meta_data(
    loom = loom,
    meta.data.json = rjson::toJSON(x = gmd)
  )
}

#'@title add_global_md_annotation
#'@description  Add the annotation with the given name to the global MetaData attribute.
#'@param loom   The loom file handler.
#'@param name   The name of the annotation.
#'@param values The values of the annotation to be added.
add_global_md_annotation <- function(
  loom,
  name,
  values
) {
  if(loom$mode=="r") stop("File open as read-only.")
  gmd <- get_global_meta_data(loom = loom)
  a <- gmd[[GA_METADATA_ANNOTATIONS_NAME]]
  a[[length(a)+1]] <- list(
    name = name,
    values = as.list(
      x = as.character(
        x = unique(
          x = values
        )
      )
    )
  )
  gmd[[GA_METADATA_ANNOTATIONS_NAME]] <- NULL
  gmd[[GA_METADATA_ANNOTATIONS_NAME]] <- a
  update_global_meta_data(
    loom = loom,
    meta.data.json = rjson::toJSON(x = gmd)
  )
}

#'@title init_global_md_embeddings
#'@description  Remove all embeddings from the given loom.
#'@param loom   The loom file handler.
#'@export
init_global_md_embeddings <- function(loom) {
  gmd <- get_global_meta_data(loom = loom)
  gmd[[GA_METADATA_EMBEDDINGS_NAME]] <- NULL
  gmd[[GA_METADATA_EMBEDDINGS_NAME]] <- list()
  update_global_meta_data(
    loom = loom,
    meta.data.json = rjson::toJSON(x = gmd)
  )
}

#'@title add_global_md_embedding
#'@description  Add the embedding with the given name to the global MetaData attribute.
#'@param loom       The loom file handler.
#'@param name       The name of the embedding to add.
#'@param is.default Is the given embedding the default embedding to use in the .loom file.
#'@param trajectory Adata.frame storing the X (first column) and Y (second column) coordinates of the trajectory.
add_global_md_embedding <- function(
  loom,
  id,
  name,
  is.default = F,
  trajectory = NULL
) {
  if(loom$mode=="r") stop("File open as read-only.")
  gmd <- get_global_meta_data(loom = loom)
  e <- gmd[[GA_METADATA_EMBEDDINGS_NAME]]
  idx <- length(x = e)+1
  e[[idx]] <- list(
    id = as.character(x = id),
    name = name
  )
  if(!is.null(x = trajectory)) {
    e[[idx]][["trajectory"]] <- trajectory
  }
  gmd[[GA_METADATA_EMBEDDINGS_NAME]] <- NULL
  gmd[[GA_METADATA_EMBEDDINGS_NAME]] <- e
  update_global_meta_data(
    loom = loom,
    meta.data.json = rjson::toJSON(x = gmd)
  )
}

get_global_md_clusterings <- function(
  loom
) {
  return (get_global_meta_data(loom = loom)[[GA_METADATA_CLUSTERINGS_NAME]])
}

#'@title get_cluster_info_by_id
#'@description  Get the value of the given field from the cluster with the given clustering_idx and cluster_idx
#'@param loom           The loom file handler.
#'@param clustering_id  The ID of the clustering you want to get the field value from.
#'@param cluster_id    `The ID of the cluster you want to get the field value from.
#'@param field          The name of the field you want to get the value from.
#'@export
get_cluster_info_by_id <- function(
  loom,
  clustering.id,
  cluster.idx,
  field = NULL
) {
  if(is.null(x = field)) {
    stop("Missing field argument in get_cluster_info_by_idx.")
  }
  gmd_clusterings <- get_global_md_clusterings(loom = loom)
  gmd_clustering <- get_global_md_clustering_by_id(
    loom = loom,
    clustering.id = clustering.id
  )
  gmd_cluster <- gmd_clustering$clusters[[cluster.idx]]
  if(!(field %in% names(x = gmd_cluster))) {
    stop(paste0("The given field", field, " is not a valid field for the given cluster ", cluster.idx, "within the clustering wiith the given ID ", clustering.id, "."))
  }
  return (gmd_cluster[[field]])
}

#'@title get_cluster_names
#'@description  Get the cluster names of the given clustering object
#'@param loom         The loom file handler.
#'@param clustering   The clustering object from the global MetaData attribute
#'@export
get_cluster_names <- function(
  clustering
) {
  return (
    sapply(X = clustering$clusters, FUN = function(cluster) return (cluster$description))
  )
}

#'@title get_global_md_clustering_by_id
#'@description  Get the clustering object from the global MetaData attribute with the given clustering.id
#'@param loom           The loom file handler.
#'@param clustering.id  The ID of the clustering you want to get the field value from.
#'@export
get_global_md_clustering_by_id <- function(
  loom,
  clustering.id
) {
  gmd_clusterings <- get_global_md_clusterings(loom = loom)
  gmd_clustering <- list.find(
    .data = gmd_clusterings,
    id == clustering.id
  )
  if(length(x = gmd_clustering) != 1) {
    stop(paste0("The clustering with the given ID ", clustering.id, " does not exist in this loom file."))
  }
  return (gmd_clustering[[1]])
}

#'@title get_global_md_clustering_by_name
#'@description  Get the clustering object from the global MetaData attribute with the given clustering.name
#'@param loom             The loom file handler.
#'@param clustering.name  The ID of the clustering you want to get the field value from.
#'@export
get_global_md_clustering_by_name <- function(
  loom,
  clustering.name
) {
  gmd_clusterings <- get_global_md_clusterings(loom = loom)
  gmd_clustering <- list.find(
    .data = gmd_clusterings,
    name == clustering.name
  )
  if(length(x = gmd_clustering) != 1) {
    stop(paste0("The given clustering ", clustering.name, " does not exist in this loom file."))
  }
  return (gmd_clustering[[1]])
}

#'@title get_global_md_clustering_info_by_name
#'@description  Get the clustering object from the global MetaData attribute with the given clustering.name
#'@param loom             The loom file handler.
#'@param clustering.name  The name of the clustering you want to get the field value from.
#'@param field            The field name to get the value from.
#'@export
get_global_md_clustering_info_by_name <- function(
  loom,
  clustering.name, 
  field = NULL
) {
  gmd_clustering <- get_global_md_clustering_by_name(
    loom = loom,
    clustering.name = clustering.name
  )
  if(!(field %in% names(x = gmd_clustering))) {
    stop(paste0("The given field", field, " is not a valid field for the given clustering ", clustering.name, "."))
  }
  return (gmd_clustering[[field]])
}

#'@title add_global_md_clustering_kv
#'@description  Add given value with the given key to the clustering with the given clustering.id of the global MetaData attribute
#'@param loom           The loom file handler.
#'@param clustering.id  The clustering ID of the clustering which the key/value is added to.
#'@param key            The name of the attribute to add.
#'@param value          The value of the attribute to add.
add_global_md_clustering_kv <- function(
  loom,
  clustering.id,
  key,
  value
) {
  if(loom$mode=="r") stop("File open as read-only.")
  gmd <- get_global_meta_data(loom = loom)
  c <- gmd[[GA_METADATA_CLUSTERINGS_NAME]]
  
  # Filter the clusterings based on the given clustering.id
  mask <- lapply(
    X = c,
    FUN = function(x) {
      return (x[["id"]])
    }
  ) == clustering.id
  
  if(sum(mask) == 0) {
    stop("Cannot add key/value to clustering that does not exist.")
  }
  idx <- which(mask == T)
  
  tmp.clustering <- c[mask][[1]]
  tmp.clustering[[key]] <- value
  gmd[[GA_METADATA_CLUSTERINGS_NAME]][[idx]] <- tmp.clustering
  update_global_meta_data(
    loom = loom,
    meta.data.json = rjson::toJSON(x = gmd)
  )
  flush(loom = loom)
}

#'@title add_global_md_clustering
#'@description  Add the clustering annotation to the global MetaData attribute.
#'@param loom     The loom file handler.
#'@param group    The name of the group of clusterings.
#'@param name     The name given to the given clustering.
#'@param clusters A list of the the cluster id for each cell present in the same order as in the columns of gene expression matrix.
add_global_md_clustering <- function(
  loom,
  id,
  group,
  name,
  clusters,
  annotation = NULL
) {
  if(loom$mode=="r") stop("File open as read-only.")
  if(sum(is.na(x = names(x = clusters))) > 0) {
    stop("The names of the given clusters contains NAs.")
  }
  gmd <- get_global_meta_data(loom = loom)
  c <- gmd[[GA_METADATA_CLUSTERINGS_NAME]]
  unique.clusters <- get_unique_clusters(clusters = clusters)

  clusters <- lapply(
    X = seq_along(
      along.with = unique.clusters
    ),
    FUN = function(cluster.idx) {
      cluster.id <- unique.clusters[[cluster.idx]]
      if(is.numeric(x = cluster.id)) {
        description <- paste("NDA - Cluster", cluster.id)
      } else if(is.character(x = cluster.id)) {
        cluster.id <- cluster.idx - 1
        description <- cluster.id
      } else {
        stop("Cluster labels are required to be of class character or numeric.")
      }
      if(!is.null(x = annotation)) {
        # Force to have the same order
        annotation <- annotation[names(x = clusters)]
        # If annotation for the current cluster not empty then add
        # d<-annotation[annotation[[annotation.cluster.id.cl]] == cluster.id, annotation.cluster.description.cl]
        # Convert from factor to character vector to be used with nchar
        d <- as.character(x = unique(x = annotation[clusters == cluster.id])) 
        
        if(length(x = d) > 1) {
          stop("Annotation is not unique: multiple annotation correspond to a cluster ID.")
        }
        if(nchar(x = d)>0) {
          description <- paste0(d, " (",cluster.id,")")
        }
      }
      # IDs should start from 0
      return (
        list(
          id = cluster.id,
          description = description
        )
      )
    }
  )
  clusterings <- get_clusterings(loom = loom)
  clustering <- list(
    id = id,
    group = group,
    name = name,
    clusters = clusters
  )
  c[[length(c)+1]] <- clustering
  gmd[[GA_METADATA_CLUSTERINGS_NAME]] <- NULL
  gmd[[GA_METADATA_CLUSTERINGS_NAME]] <- c
  update_global_meta_data(
    loom = loom,
    meta.data.json = rjson::toJSON(x = gmd)
  )
  flush(loom = loom)
}

#'@title update_cluster_descriptions_by_cluster_annotation_mapping_df
#'@description  Update the cluster descriptions of the clusters of the given clustering_name
#'@param loom                                   The loom file handler.
#'@param clustering.name                        The name of the clustering.
#'@param annotation.df                          The data.frame containing the cluster annotatiion mapping
#'@param annotation.df.cluster.id.column.name   The column name of the given annotation.df containing the cluster ID values
#'@param annotation.df.annotation.column.name   The column name of the given annotation.df containing the annotation values.
#'@param in.place                               If true update the given loom, otherwise return the update global meta data.
#'@export
update_cluster_descriptions_by_cluster_annotation_mapping_df <- function(
  loom,
  clustering.name,
  annotation.df = NULL,
  annotation.df.cluster.id.column.name = NULL,
  annotation.df.annotation.column.name = NULL,
  in.place = TRUE
) {
  if(loom$mode=="r") stop("File open as read-only.")

  ## make sure annotation.df cluster id column is numeric!
  annotation.df[, annotation.df.cluster.id.column.name] <- as.numeric(annotation.df[, annotation.df.cluster.id.column.name])
  
  gmd <- get_global_meta_data(loom = loom)
  gmd_clusterings <- gmd[[GA_METADATA_CLUSTERINGS_NAME]]
  c <- gmd[[GA_METADATA_CLUSTERINGS_NAME]]
  gmd_clustering <- rlist::list.filter(
    .data = gmd_clusterings,
    name == clustering.name
  )[[1]]
  gmd_clustering_idx <- list.findi(
    .data = gmd_clusterings,
    cond = name == clustering.name
  )[[1]]
  if(is.null(x = annotation.df) 
     | is.null(x = annotation.df.cluster.id.column.name) 
     | is.null(x = annotation.df.annotation.column.name)) {
    cluster_ids <- do.call(
      what = "c",
      args = lapply(
        X = gmd_clustering$clusters,
        FUN = function(cluster) {
          cluster$id
        }
      )
    )
    reset <- TRUE
  } else {
    if(!(annotation.df.cluster.id.column.name %in% colnames(x = annotation.df))) {
      stop(paste0("The given '",annotation.df.cluster.id.column.name,"' does not exist in the given annotation.df."))
    }
    if(!(annotation.df.annotation.column.name %in% colnames(x = annotation.df))) {
      stop(paste0("The given '",annotation.df.annotation.column.name,"' does not exist in the given annotation.df."))
    }
    annotation_names <- annotation.df[[annotation.df.annotation.column.name]]
    cluster_ids <- annotation.df[[annotation.df.cluster.id.column.name]]
    annotation_as_named_list <- setNames(
      object = annotation_names,
      nm = cluster_ids
    )
    reset <- FALSE
  }
  clusters <- lapply(
    X = cluster_ids,
    FUN = function(cluster.id) {
      cluster <- rlist::list.filter(gmd_clustering$clusters, id == cluster.id)[[1]]
      description <- paste("NDA - Cluster", cluster$id)
      if(!reset) {
        # If annotation for the current cluster not empty then add
        # Convert from factor to character vector to be used with nchar
        d <- as.character(x = annotation_as_named_list[as.character(cluster.id)]) 
        
        if(length(d) > 1) {
          stop("Annotation is not unique: multiple annotation correspond to a cluster ID.")
        }
        if(nchar(d)>0) {
          description <- paste0(d, " (",cluster.id,")")
        }
      }
      return (
        list(
          id = cluster.id,
          description = description
        )
      )
    }
  )
  gmd_clustering$clusters <- clusters
  c[[gmd_clustering_idx]] <- gmd_clustering
  gmd[[GA_METADATA_CLUSTERINGS_NAME]] <- NULL
  gmd[[GA_METADATA_CLUSTERINGS_NAME]] <- c
  if(in.place) {
    update_global_meta_data(
      loom = loom,
      meta.data.json = rjson::toJSON(x = gmd)
    )
    flush(loom = loom)
  } else {
    return (gmd)
  }
}

#'@title add_global_md_regulon_thresholds
#'@description  Add the regulon thresholds annotation to the global MetaData attribute.
#'@param loom                           The loom file handler.
#'@param regulon.threshold.assignments  The automated regulon cell assignments object generated by SCENIC.
#'@param regulon.enrichment.table       The regulon enrichment table generated by SCENIC.
add_global_md_regulon_thresholds <-function(
  loom,
  regulon.threshold.assignments,
  regulon.enrichment.table = NULL
) {
  if(loom$mode=="r") stop("File open as read-only.")
  gmd <- get_global_meta_data(loom = loom)
  rT <- gmd[["regulonThresholds"]]
  if(!is.null(x = regulon.enrichment.table)) {
    # Store the motif name
    if(!("NES"%in%colnames(x = regulon.enrichment.table))) {
      stop("Error: NES column is not provided in the regulon enrichment table!")
    }
    if(!("motif"%in%colnames(x = regulon.enrichment.table))) {
      stop("Error: motif column is not provided in the regulon enrichment table!")
    }
    regulon_enrichment_table <- regulon.enrichment.table[with(data = regulon.enrichment.table, order(NES, decreasing = T)), ]
    regulon_enrichment_table <- regulon_enrichment_table[which(x = regulon_enrichment_table$TFinDB!=""),]
  }
  for(regulon in names(x = regulon.threshold.assignments)) {
    regulon_name <- strsplit(x = regulon, split = " ")[[1]][1]
    # Store the threshold assignments
    rta <- regulon.threshold.assignments[[regulon]]
    AUC_thresholds <- rta$aucThr$thresholds
    all_thresholds <- do.call(
      what = "c",
      args = lapply(
        X = row.names(x = AUC_thresholds),
        FUN = function(threshold.name) {
          l <- list()
          l[[threshold.name]] <- AUC_thresholds[threshold.name,"threshold"]
          return (l)
        }
      )
    )
    AUC_selected_threshold <- rta$aucThr$selected
    # Add regulon thresholds
    regulon_tresholds <- list(
      regulon = gsub(pattern = " ", replacement = "_", x = regulon),
      defaultThresholdValue = as.numeric(x = AUC_selected_threshold),
      defaultThresholdName = names(x = AUC_selected_threshold),
      allThresholds = all_thresholds
    )
    # Add the motif data
    if(!is.null(x = regulon.enrichment.table)) {
      regulon_tf <- gsub(
        pattern = "_extended",
        replacement = "",
        x = regulon_name
      )
      met_subset <- regulon_enrichment_table[regulon_enrichment_table$highlightedTFs == regulon_tf,]
      motif_by_type <- split(
        x = met_subset$motif,
        f = met_subset$TFinDB
      )
      
      motif_name = NULL
      if(grepl("_extended",regulon_name)) {
        motif_name = motif_by_type[["*"]][1] ## Extended
      } else{ 
        motif_name = motif_by_type[["**"]][1] ## High confidence annotation
      }
      
      motif_data <- paste0(motif_name,".png")
      regulon_tresholds <- append(
        x = regulon_tresholds,
        values = list("motifData"=motif_data)
      )
    } else {
      warning("Argument 'regulon.enrichment.table' is not provided. Motif data will not be stored in the given .loom.")
    }
    rT[[length(x = rT)+1]] <- regulon_tresholds
  }
  gmd[["regulonThresholds"]] <- NULL
  gmd[["regulonThresholds"]] <- rT
  update_global_meta_data(
    loom = loom,
    meta.data.json = rjson::toJSON(x = gmd)
  )
  flush(loom = loom)
}


#'@title check_global_meta_data
#'@description  Perform some sanity checks on the MetaData global attribute
#'@param loom   The loom file handler.
check_global_meta_data <- function(
  loom
) {
  if(!global_meta_data_exists(loom = loom)) {
    stop("The MetaData global attribute does not exist in the given .loom. To be able to run this function please first initialize the MetaData global attribute by running init_global_meta_data(loom = loom).")
  }
}

#'@title global_meta_data_exists
#'@description  Check if global MetaData attribute exists for the given loom.
#'@param loom   The loom file handler.
global_meta_data_exists <- function(
  loom
) {
  return (
    loom$attr_exists(
      attr_name = GA_METADATA_NAME
    ) | loom$link_exists(name = paste0("attrs/", GA_METADATA_NAME))
  )
}

load_global_meta_data <- function(
  meta.data
) {
  if(!is_base64_encoded(value = meta.data)) {
    if(!is_json(value = meta.data)) {
      stop("The global MetaData attribute in the given loom is corrupted.")
    }
    meta_data <- meta.data
  } else {
    meta_data <- decompress_gzb64(gzb64c = meta.data)
  }
  return (
    rjson::fromJSON(
      json_str = meta_data
    )
  )
}

#'@title get_global_meta_data
#'@description Get the global MetaData attribute as a R object.
#'@param loom The loom file handler.
#'@export
get_global_meta_data <- function(
  loom
) {
  # Check if the given loom is v3
  if(loom$link_exists(name = "attrs")) {
    md <- loom[["attrs"]][["MetaData"]][]
  } else {
    md <- h5attr(x = loom, which = GA_METADATA_NAME)
  }
  return (
    load_global_meta_data(
      meta.data = md
    )
  )
}

#'@title update_global_meta_data
#'@description Update the global MetaData attribute with the given meta.data.json.
#'@param loom           The loom file handler.
#'@param meta.data.json The meta data stored as a json string.
update_global_meta_data <- function(
  loom,
  meta.data.json
) {
  if(is_loom_spec_version_3_or_greater(loom = loom)) {
    meta_data_json <- as.character(x = meta.data.json)
  } else {
    meta_data_json <- compress_gzb64(c = as.character(x = meta.data.json))
  }
  update_global_attr(
    loom = loom,
    key = GA_METADATA_NAME,
    value = meta_data_json
  )
}

#'@title init_global_meta_data
#'@description  Initialize the global MetaData attribute.
#'@param loom               The loom file handler.
#'@param loom.spec.version  The version of the loom specification. Choose on of: 2 or 3
#'@export
init_global_meta_data <- function(
  loom,
  loom.spec.version
) {
  if(!(loom.spec.version %in% c(2,3)))
     stop("Invalid loom.spec.version!")
  
  meta_data <- list(
    annotations = list(),
    metrics = list(),
    embeddings = list(),
    clusterings = list(),
    regulonThresholds = list()
  )
  meta_data_json <- rjson::toJSON(x = meta_data)
  if(GA_METADATA_NAME %in% list.attributes(object = loom))
    stop("The MetaData global attribute already exists.")
  if(loom.spec.version < 3) {
    md <- compress_gzb64(
      c = as.character(x = meta_data_json)
    )
  } else {
    md <- meta_data_json
  }
  add_global_attr(
    loom = loom,
    key = GA_METADATA_NAME,
    value = as.character(x = md)
  )
}

#'@title clear_global_meta_data
#'@description  Empty the global MetaData attribute.
#'@param loom   The loom file handler.
clear_global_meta_data <- function(
  loom
) {
  meta_data <- list(
    annotations = list(),
    metrics = list(),
    embeddings = list(),
    clusterings = list(),
    regulonThresholds = list()
  )
  meta_data_json <- rjson::toJSON(x = meta_data)
  if(!(GA_METADATA_NAME %in% list.attributes(object = loom))) {
    compressed.meta.data <- compress_gzb64(
      c = as.character(x = meta_data_json)
    )
    add_global_attr(
      loom = loom,
      key = GA_METADATA_NAME,
      value = as.character(x = compressed.meta.data)
    )
  } else {
    update_global_meta_data(
      loom = loom,
      meta.data.json = as.character(x = meta_data_json)
    )
  }
}

#*******************#
# Embedding functions ---- 
#*******************#

#'@title add_embedding_dyno
#'@description Add the given embedding as a column attribute and meta data related to the given embeddding to the given .loom file handler.
#'@param loom The loom file handler.
#'@param dyno A dyno object generated by dyno::infer_trajectory.
#'@param name A name to give to the embedding/trajectory inferred by the trajectory method.
#'@export
add_embedding_from_dyno <- function(loom, dyno, name = NULL) {
  if(is.null(x = name)) {
    stop("Please specify a name for the given analysis run with dyno.")
  }
  add_embedding(
    loom = loom,
    embedding = dyno$dimred,
    name = name,
    trajectory = create_trajectory_from_dyno(dyno = dyno),
    is.default = !col_attrs_exists_by_key(loom = loom, key = "Embedding")
  )
}

#'@title add_default_embedding
#'@description  Add the main (default) embedding to the given loom file handler.
#'@param loom       The loom file handler.
#'@param embedding  The embedding to add.
add_default_embedding <- function(
  loom,
  embedding
) {
  if(loom$mode=="r") stop("File open as read-only.")
  embedding <- as.data.frame(x = embedding)
  colnames(embedding) <- CA_EMBEDDING_DFLT_CNAMES
  add_col_attr(
    loom = loom,
    key = CA_EMBEDDING_NAME,
    value = embedding
  )
}

#'@title get_next_embedding_id
#'@description  Get the next embedding ID
#'@param loom       The loom file handler.
#'@export
get_next_embedding_id <- function(loom) {
  ca_extra_embeddings_dims <- do.call(what = "c", args = lapply(CA_EXTRA_EMBEDDINGS_NAMES, function(ca_key) {
    ca.embeddings <- get_col_attr_by_key(
      loom = loom,
      key = ca_key
    )
    return (max(as.integer(x = colnames(x = ca.embeddings))))
  }))
  if(ca_extra_embeddings_dims[1] != ca_extra_embeddings_dims[2]) {
    stop("Embeddings_X and Embeddings_Y have different dimensions. Make sure they the same dimensions.")
  }
  return (ca_extra_embeddings_dims[1]+1)
}

#'@title add_embedding
#'@description Add the given embedding as a column attribute and meta data related to the given embeddding to the given .loom file handler.
#'@param loom       The loom file handler.
#'@param embedding  A M-by-2 data.frame of the embeddings with M cells. 
#'                  If the given trajectory is not NULL, it should correspond to the projection of the cells onto the given trajectory.
#'@param name       The name of the given embedding.
#'@param is.default Default embedding to use in the .loom file.
#'@param trajectory A named list with the node names, the edges, and the x and y coordinates of the nodes of trajectory. Use the function create_trajectory().
#'@export
add_embedding <- function(
  loom,
  embedding,
  name,
  is.default = F,
  trajectory = NULL
) {
  if(loom$mode=="r") stop("File open as read-only.")
  
  # Check if any NA values
  if(any(is.na(x = embedding))) {
    stop("Please make sure that the embeddings do not contain any NA values.")
  }
  
  # Check MetaData global attribute
  check_global_meta_data(loom = loom)
  
  if(is.null(x = row.names(x = embedding))) {
    stop("Please, make sure row.names are correctly filled in with cell IDs.")
  }
  
  # Check if some cells are missing betweem cells in embedding and the cells in the expression matrix
  check_missing_cells <- check_missings(
    x = get_cell_ids(loom = loom),
    y = row.names(x = embedding)
  )
  if(!check_missing_cells$result) {
    if(length(x = check_missing_cells$x.missing.in.y) > 0) {
      stop(paste0("Some cells (",length(x = check_missing_cells$x.missing.in.y),") from expression matrix are missing in the embeddings: ", paste0(check_missing_cells$x.missing.in.y, collapse = ","), "."))
    }
    if(length(check_missing_cells$y.missing.in.x) > 0) {
      stop(paste0("Some cells (",length(x = check_missing_cells$y.missing.in.x),") from embeddings are missing in the expression matrix: ", paste0(check_missing_cells$y.missing.in.x, collapse = ","), "."))
    }
  }
  
  # Check if cells in embedding are in the same order as in the expression matrix
  if(!is_order_conserved(
    x = get_cell_ids(loom = loom),
    y = row.names(x = embedding))
  ) {
    stop("Please, make sure that row.names of the given embedding are in the same order as the column names of the expression matrix in the given loom.")
  }
  
  # Add the default embedding also to Embeddings_X and Embeddings_Y
  if(is.default) {
    add_default_embedding(
      loom = loom,
      embedding = embedding
    )
  } else {
    print(paste0("Adding embedding ", name, "..."))
  }
  ca <- loom[["col_attrs"]]
  
  # Add a main embedding
  if(sum(CA_EXTRA_EMBEDDINGS_NAMES%in%names(ca)) != 2) {
    for(i in seq_along(along.with = CA_EXTRA_EMBEDDINGS_NAMES)) {
      e <- as.data.frame(x = embedding[,i])
      id <- "-1"
      colnames(x = e) <- id
      add_col_attr(
        loom = loom,
        key = CA_EXTRA_EMBEDDINGS_NAMES[i],
        value = e
      )
    }
  } else {
    id <- as.character(x = get_next_embedding_id(loom = loom))

    for(i in seq_along(along.with = CA_EXTRA_EMBEDDINGS_NAMES)) {
      ca.embeddings <- get_col_attr_by_key(
        loom = loom,
        key = CA_EXTRA_EMBEDDINGS_NAMES[i]
      )
      e <- as.data.frame(x = embedding[,i])
      id <- as.character(x = ncol(x = ca.embeddings))
      colnames(x = e) <- id
      ca.embeddings <- cbind(ca.embeddings, e)
      # Update the current coordinates Embeddings
      update_col_attr(
        loom = loom,
        key = CA_EXTRA_EMBEDDINGS_NAMES[i],
        value = as.data.frame(x = ca.embeddings)
      )
    }
  }
  flush(loom = loom)
  # Add the given embedding to the global attribute MetaData
  add_global_md_embedding(
    loom = loom,
    id = id,
    name = name,
    is.default = is.default,
    trajectory = trajectory
  )
  flush(loom = loom)
}

#*******************#
# Trajectories functions ---- 
#*******************#

#'@title create_trajectory_from_dyno
#'@description Create a trajectory object from dyno TI output.
#'@param dyno A dyno object generated by dyno::infer_trajectory.
#'@export
create_trajectory_from_dyno <- function(
  dyno
) {
  # get cell positions
  cell_positions <- dyno$dimred %>% 
    as.data.frame() %>% 
    rownames_to_column("cell_id")
  
  # assign cells to closest milestone
  cell_positions <- left_join(
    cell_positions,
    dyno$milestone_percentages %>% 
      group_by(cell_id) %>% 
      arrange(desc(percentage)) %>% 
      filter(dplyr::row_number() == 1) %>% 
      select(cell_id, milestone_id),
    "cell_id"
  )
  
  print("Projecting the waypoints... (this may take some time)")
  waypoint_projection <- project_waypoints(
    traj = dyno,
    cell_positions = cell_positions
  )
  edges <- as.data.frame(x = waypoint_projection$edges[, c("from","to")]) # "arrow"
  coordinates <- data.frame(
    "x"=waypoint_projection$positions[, "comp_1"],
    "y"=waypoint_projection$positions[, "comp_2"]
  )
  # Set the row.names
  row.names(x = coordinates) <- waypoint_projection$positions$waypoint_id
  return (
    create_trajectory(
      edges = edges,
      coordinates = coordinates
    )
  )
}

#'@title create_trajectory_from_monocle
#'@description Create a trajectory object from CellDataSet monocle output.
#'@param cds CellDataSet object from monocle.
#'@export
create_trajectory_from_monocle <- function(
  cds
) {
  edges <- as.data.frame(
    x = igraph::get.edgelist(
      graph = cds@minSpanningTree
    )
  )
  coordinates <- data.frame(
    "x"=t(x = reducedDimK(cds = cds))[,1],
    "y"=t(x = reducedDimK(cds = cds))[,2]
  )
  return (
    create_trajectory(
      edges = edges,
      coordinates = coordinates
    )
  )
}

#'@title create_trajectory
#'@description Create a trajectory object from the given edges and coordinates of the nodes.
#'@param cds CellDataSet object from monocle.
#'@export
create_trajectory <- function(
  edges,
  coordinates
) {
  if(!is.data.frame(x = edges))
    stop("The given edges should be a data.frame.")
  if(!is.data.frame(x = coordinates))
    stop("The given coordinates should be a data.frame.")
  if(all(
    as.character(x = seq(
      from = 1,
      to = nrow(x = coordinates))
    ) == row.names(
      x = coordinates
    )) | is.null(x = row.names(coordinates))
  ) {
    stop("The row.names of the given coordinates should have the node names.")
  }
  colnames(x = edges)[c(1,2)] <- c("source","target")
  row.names(x = edges) <- NULL
  edges.list <- apply(
    X = edges,
    MARGIN = 1,
    FUN = as.list
  )
  nodes <- row.names(x = coordinates)
  colnames(x = coordinates) <- c("x","y")
  row.names(x = coordinates) <- NULL
  coord.list <- apply(
    X = coordinates,
    MARGIN = 1,
    FUN = as.list
  )
  return (
    list(
      "nodes"=nodes,
      "edges"=edges.list,
      "coordinates"=coord.list
    )
  )
}

#*******************#
# Clusterings functions ---- 
#*******************#

get_unique_clusters <- function(
  clusters
) {
  if(is.factor(x = clusters)) {
    return (
      sort(
        x = as.numeric(levels(x = clusters)),
        decreasing = F)
      )
  } else {
    return (
      sort(
        x = as.numeric(unique(x = clusters)),
        decreasing = F
      )
    )
  }
}

#'@title get_seurat_clustering_resolutions
#'@description Get list of all computed clusterings resolutions in the given seurat object.
#'@param seurat A Seurat object.
#'@param prefix Prefix of the clustering to extract the resolutions from (only for Seurat v3 objects).
#'@export
get_seurat_clustering_resolutions <- function(
  seurat,
  prefix = NULL
) {
  if(seurat@version >= 3) {
    clustering.ids <- grep(
      pattern = "res\\.",
      x = colnames(x = seurat@meta.data)
    )
    clustering.prefix <- paste0(unique(x = stringr::str_split_fixed(string = colnames(x = seurat@meta.data)[clustering.ids], pattern = "res.", n = 2)[,1]), "res.")

    # Check if there are multiple prefixes for clustering information
    # Seurat v3 uses integrated_snn_ prefix for storing clustering information from its integration method
    if(length(x = clustering.prefix) > 1 && is.null(x = prefix)) {
      stop(paste0("Detected multiple prefixes for clustering information: ", paste(clustering.prefix, collapse = ", "), " . Please select one of them using the prefix argument."))
    } else if(length(x = clustering.prefix) == 1) {
      prefix <- clustering.prefix
    } else if(length(x = clustering.prefix) == 0) {
      stop("It seems that clustering data has not been computed. ")
    }
    if(length(x = prefix) == 1 && !(prefix %in% clustering.prefix)) {
      stop("The selected prefix does not exist.")
    }
    return (
      as.numeric(
        x = stringr::str_split_fixed(
          string = colnames(x = seurat@meta.data)[grep(pattern = paste0("^", prefix), x = colnames(x = seurat@meta.data))],
          pattern = prefix,
          n = 2
        )[,2]
      )
    )
  } else if (seurat@version >= 2 && seurat@version < 3){
    return (
      as.numeric(x = stringr::str_split_fixed(
        string = names(x = seurat@calc.params)[grep(pattern = "FindClusters", x = names(x = seurat@calc.params))],
        pattern = "FindClusters.res.",
        n = 2
      )[,2])
    )
  } else {
    stop(paste0("This version of Seurat ", seurat@version," is not supported."))
  }
}

#'@title add_seurat_clustering
#'@description Add all the Seurat clusterings in the given seurat object to the given .loom file handler.
#'@param loom                                 The loom file handler.
#'@param seurat                               The Seurat object
#'@param seurat.assay                         The assay to access the data from (only if you're using Seurat version 3). Option used only for sanity checks.
#'@param seurat.markers.file.path.list        The named list of file paths to the markers saved in RDS format. The names should be the resolution id of the corresponding clustering (e.g.: SCT_snn_res.0.5). Default is NULL. 
#'@param default.clustering.resolution        The clustering resolution (i.e.: '0.5' or 'SCT_snn_res.0.5') of the clustering that should be set as the default which an annotation can be set for.
#'@param annotation                           A data.frame with annotation for the clusters of the default clustering. Default is NULL.
#'@param annotation.cluster.id.cn             The column name to use for the IDs of the clusters found by the given clustering group. Default is NULL.
#'@param annotation.cluster.description.cn    The column name to use for the description of the clusters found by the given clustering group. Default is NULL.
#'@export
add_seurat_clustering <- function(
  loom,
  seurat,
  seurat.assay = "RNA",
  seurat.clustering.prefix = NULL,
  seurat.markers.file.path.list = NULL,
  seurat.marker.metric.accessors = NULL,
  seurat.marker.metric.names = NULL,
  seurat.marker.metric.description = NULL,
  default.clustering.resolution = NULL,
  default.clustering.overwrite = NULL,
  annotation = NULL,
  annotation.cluster.id.cn = NULL,
  annotation.cluster.description.cn = NULL
) {
  if(loom$mode=="r") stop("File open as read-only.")
  
  # Check MetaData global attribute
  check_global_meta_data(loom = loom)
  
  if(!is.null(x = seurat.markers.file.path.list)) {
    if(is.null(x = names(x = seurat.markers.file.path.list))) {
      stop("Argument 'seurat.markers.file.path.list' is not a named list. The names should correspond to the clustering ID in Seurat object (e.g.: res.2).")
    }
  }
  
  # Access data
  if(seurat@version >= 3) {
    counts <- seurat@assays[[seurat.assay]]@counts
    data <- seurat@assays[[seurat.assay]]@data
  } else if (seurat@version >= 2 && seurat@version < 3){
    counts <- seurat@raw.data
    data <- seurat@data
  } else {
    stop(paste0("This version of Seurat ", seurat@version," is not supported."))
  }
  
  # Check that all cells present in loom digital expression matrix are present in the given seurat@data and seurat@scale.data objects
  cells <- get_cell_ids(loom = loom)
  n_cells <- length(x = cells)
  if(sum(cells %in% colnames(x = counts)) != n_cells | sum(cells %in% colnames(x = data)) != n_cells) {
    stop(paste0("Some cells are missing. Please check that all cells from the digital expression matrix (dgem) in the given loom are present in the data slots i.e.: seurat@raw.data, seurat@data or seurat@assays[[", seurat.assay, "]]@counts, seurat@assays[[", seurat.assay, "]]@data"))
  }
  
  clustering.resolutions <- get_seurat_clustering_resolutions(
    seurat = seurat,
    prefix = seurat.clustering.prefix
  )
  if(length(x = clustering.resolutions) > 0) {
    for(res in clustering.resolutions) {
      
      # Get cluster IDs for the current clustering
      resolution_id <- paste0(seurat.clustering.prefix,res)
      print(paste0("Seurat, ", seurat.clustering.prefix, res))
      
      if(seurat@version >= 3) {
        if(is.null(x = seurat.clustering.prefix)) {
          stop("The given seurat.clustering.prefix is required. E.g.: RNA_snn_res.")
        }
        cluster_ids <- seurat@meta.data[, paste0(seurat.clustering.prefix, res)]
        names(x = cluster_ids) <- rownames(x = seurat@meta.data)
      } else if (seurat@version >= 2 && seurat@version < 3){
        seurat <- Seurat::SetAllIdent(
          object = seurat,
          id=resolution_id
        )
        cluster_ids <- seurat@ident
      } else {
        stop(paste0("This version of Seurat ", seurat@version," is not supported."))
      }
      
      is_default_clustering <- F
      
      # Add the Seurat clusters
      print("Adding Seurat clusters...")
      a <- NULL
      ac_id_cn <- NULL
      ac_description_cn <- NULL
      if(!is.null(x = default.clustering.resolution)) {
        if(res == default.clustering.resolution | resolution_id == default.clustering.resolution) {
          print("Adding default Seurat clusters...")
          if(!is.null(x = annotation) && !is.null(x = annotation.cluster.id.cn) && !is.null(x = annotation.cluster.description.cn)) {
            a <- annotation
            ac_id_cn <- annotation.cluster.id.cn
            ac_description_cn <- annotation.cluster.description.cn
          }
          is_default_clustering <- T
        }
      } else {
        # If only one clustering resolution computed then set this one as default
        if(length(x = clustering.resolutions) == 1) {
          is_default_clustering <- T
        }
      }
      flush(loom = loom)
      cluster_annotation <- create_cluster_annotation(
        clusters = cluster_ids,
        cluster.meta.data.df = a,
        cluster.id.cn = ac_id_cn, 
        cluster.description.cn = ac_description_cn
      )
      clid <- add_annotated_clustering(
        loom = loom,
        group = "Seurat",
        name = paste("Seurat,", paste0(seurat.clustering.prefix, res)),
        clusters = cluster_ids,
        annotation = cluster_annotation,
        is.default = is_default_clustering,
        overwrite.default = default.clustering.overwrite
      )
      print(paste0("Clustering ID: ", clid))
      flush(loom = loom)

      # Add the Seurat markers if not empty
      if(!is.null(x = seurat.markers.file.path.list)) {
        print("Adding Seurat markers...")
        if(resolution_id %in% names(x = seurat.markers.file.path.list)) {
          if(file.exists(seurat.markers.file.path.list[[resolution_id]])) {
            seurat_markers <- readRDS(file = seurat.markers.file.path.list[[resolution_id]])
            seurat_markers_by_cluster <- split(
              x = seurat_markers,
              f = seurat_markers$cluster
            )
            add_clustering_markers(
              loom = loom,
              clustering.id = clid,
              clustering.markers = seurat_markers_by_cluster,
              marker.metric.accessors = seurat.marker.metric.accessors,
              marker.metric.names = seurat.marker.metric.names,
              marker.metric.descriptions = seurat.marker.metric.description
            )
            flush(loom = loom)
          } else {
            warning(paste0("Missing Seurat markers file for clustering resolution ", res, "."))
          }
        } else {
          warning(paste0("Seurat markers for clustering resolution ", res, " have not been computed."))
        }
      } else {
        print("No Seurat markers added.")
      }
    }
  } else {
    warning("It seems that you are using an old version of Seurat.")
    print("Adding Seurat clusters...")
    cluster_annotation <- create_cluster_annotation(
      clusters = seurat@ident,
      cluster.meta.data.df = annotation,
      cluster.id.cn =annotation.cluster.id.cn,
      cluster.description.cn = annotation.cluster.description.cn
    )
    clid <- add_annotated_clustering(
      loom = loom,
      group = "Seurat",
      name = "Seurat, resolution undefined",
      clusters = seurat@ident,
      annotation = cluster_annotation,
      is.default = T,
      overwrite.default = default.clustering.overwrite
    )
  }
}

#'@title append_clustering_update_ca
#'@description  Append the given clustering with the given clustering.id.
#'@param loom           The loom file handler.
#'@param clustering.id  The id of the embedding group.
#'@param clustering     The embedding to add.
append_clustering_update_ca <- function(
  loom,
  clustering.id,
  clustering
) {
  if(loom$mode=="r") stop("File open as read-only.")
  
  ca_clusterings <- get_clusterings(loom = loom)
  colnames(clustering) <- as.character(clustering.id)
  # Append this clustering
  ca_clusterings <- cbind(
    ca_clusterings,
    clustering
  )
  update_col_attr(
    loom = loom,
    key = CA_CLUSTERINGS_NAME,
    value = as.data.frame(x = ca_clusterings)
  )
}

#'@title create_cluster_annotation
#'@description Create a named list where names are the cell IDs and the values are the annotation stored in the given cluster.description.cn column of the given cluster.meta.data.df. 
#'             If cluster.meta.data.df is set to NULL, annotation of cells are set to "NDA - Cluster X" where X is the cluster ID.
#'@param cluster.meta.data.df    A data.frame object with at least 2 columns named cluster.id.cn and cluster.description.cn.
#'@param clusters                A named list of the cell id and the assigned cluster id generated by a clustering method (e.g.: Seurat).
#'@param cluster.id.cn           The column name to use for the IDs of the clusters.
#'@param cluster.description.cn  The column name to use for the description of the clusters.
#'@export
create_cluster_annotation <- function(
  clusters,
  cluster.meta.data.df = NULL,
  cluster.id.cn =  NULL,
  cluster.description.cn = NULL
) {
  unique_clusters <- get_unique_clusters(clusters = clusters)
  annotation <- setNames(
    object = rep(NA, length(x = clusters)),
    nm = names(clusters)
  )

  for(cluster.idx in seq_along(along.with = unique_clusters)) {
    cluster_id <- unique_clusters[[cluster.idx]]
    if(is.numeric(x = cluster_id)) {
      description <- paste("NDA - Cluster", cluster_id)
    } else if(is.character(x = cluster_id)) {
      description <- cluster_id
    } else {
      stop("Cluster labels are required to be of class character or numeric.")
    }
    if(!is.null(x = cluster.meta.data.df)) {
      if(!(cluster.description.cn %in% colnames(x = cluster.meta.data.df))) {
        stop(paste0("The given column ",cluster.description.cn, " does not exist in the annotation provided."))
      }
      description <- as.vector(x = unlist(x = cluster.meta.data.df[cluster.meta.data.df[[cluster.id.cn]] == cluster_id, cluster.description.cn]))
    }
    annotation[as.vector(x = unlist(x = clusters)) == cluster_id] <- description
  }
  annotation <- factor(x = annotation)
  return (annotation)
}

#'@title add_clustering
#'@description Add the given clusters in the given group column attribute and meta data related to the given clustering to the given .loom file handler.
#'@param loom               The loom file handler.
#'@param group              The for the given clustering group to which the given clusters have to be added.
#'@param name               The name given to this clustering.
#'@param clusters           A named list of the cell id and assigned the cluster id.
#'@param is.default         Set this clustering be set as default one.
#'@param overwrite.default  Overwrite the default clustering in the given loom if set to TRUE. Otherwise, it's not updated.
#'@export
add_clustering <- function(
  loom,
  group,
  name,
  clusters,
  is.default = F,
  overwrite.default = NULL
) {
  if(loom$mode=="r") stop("File open as read-only.")
  
  annotation <- create_cluster_annotation(clusters = clusters)
  add_annotated_clustering(
    loom = loom,
    group = group,
    name = name,
    clusters = clusters,
    annotation = annotation,
    is.default = is.default,
    overwrite.default = overwrite.default
  )
}

clusters_as_factor_ids <- function(clusters) {
  # Convert character clusters to to numeric clusters
  unique_clusters <- get_unique_clusters(clusters = clusters)
  if(any(is.character(x = unique_clusters)))
    return (
      # IDs should start from 0
      setNames(
        object = factor(x = plyr::mapvalues(
          x = clusters,
          from = unique_clusters,
          to = seq_along(along.with = unique_clusters)-1
        )),
        nm = names(x = clusters)
      )
    )
  return (clusters)
}

#'@title add_annotated_clustering
#'@description Add the given clusters in the given group column attribute and meta data related to the given clustering to the given .loom file handler.
#'@param loom                 The loom file handler.
#'@param group                The for the given clustering group to which the given clusters have to be added.
#'@param name                 The name given to this clustering
#'@param clusters             A named list of the cell id and assigned the cluster id.
#'@param annotation           A named list of the cell id and the corresponding annotation.
#'@param is.default           Set this clustering be set as default one.
#'@param overwrite.default    Overwrite the default clustering in the given loom if set to TRUE. Otherwise, it's not updated.
#'@export
add_annotated_clustering <- function(
  loom,
  group,
  name,
  clusters,
  annotation,
  is.default = F,
  overwrite.default = NULL
) {
  if(loom$mode=="r") stop("File open as read-only.")
  
  id <- 0
  if(length(x = unique(x = clusters)) == length(x = unique(x = annotation))) {
    # Make sure the order are the same
    annotation <- annotation[names(x = clusters)]
  } else {
    # Does not seem that cluster IDs and cluster annotation correspond
    # Remap to have the same number of unique IDs as the number of unique annotation
    clusters <- factor(x = plyr::mapvalues(
      x = annotation,
      from = unique(x = annotation),
      to = seq_along(along.with = unique(x = annotation))-1
    ))
    names(x = clusters) <- names(x = annotation)
  }
  
  # Convert clusters to numeric values if needed clusters are of class character
  # This is required since the column attribute Clusterings expects numeric values
  clusters_as_factor_ids <- clusters_as_factor_ids(clusters = clusters)
  
  # Check if all the cells are present in the given clusters
  cell_ids <- get_cell_ids(loom = loom)
  n_mismatches <- sum(!(names(x = clusters) %in% cell_ids))
  if(n_mismatches > 0) {
    stop(paste0("Mismatches detected between the cell IDs (",n_mismatches,") in the given clusters object and in CellID column attribute of the .loom. Please do not use special characters for cell IDs except '_'."))
  }
  # Order the clusters in the order defined CellID column attribute
  clusters <- clusters[cell_ids]
  clusters_as_factor_ids <- clusters_as_factor_ids[cell_ids]
  # Convert clusters_as_factor_ids to integer (not numeric since this will be interpreted as float) otherwise H5T_ENUM will be used leading to 
  # Datatype: H5T_COMPOUND {
  #   H5T_ENUM {
  #     H5T_STD_U8LE;
  #     "0"                1;
  #     "1"                2;
  #   } "0" : 0;
  # }
  clusters_as_numeric_ids <- as.integer(x = as.character(x = clusters_as_factor_ids))
  # If the clustering is the default one
  # Add it as the generic column attributes ClusterID and ClusterName
  if(is.default) {
    if(col_attrs_exists_by_key(
      loom = loom, key = CA_DFLT_CLUSTERS_ID
      ) | col_attrs_exists_by_key(
        loom = loom,
        key = CA_DFLT_CLUSTERS_NAME)
    ) {
      if(is.null(x = overwrite.default)) {
        stop("A default clustering has already been set. It can be overwritten by setting the corresponding *overwrite.default to TRUE or skipped by setting it to FALSE.")
      } else {
        if(overwrite.default) {
          warning("A default clustering has already been set. The current default clustering will be overwritten.")
          # Check for each if it exists. If it exists update otherwise create new.
          if(col_attrs_exists_by_key(loom = loom, key = CA_DFLT_CLUSTERS_ID)) {
            update_col_attr(
              loom = loom,
              key = CA_DFLT_CLUSTERS_ID,
              value = clusters_as_numeric_ids
            )
          } else {
            add_col_attr(
              loom = loom,
              key = CA_DFLT_CLUSTERS_ID,
              value = clusters_as_numeric_ids
            )
          }
          # Check if annotation is not null
          if(!is.null(x = annotation)) {
            if(col_attrs_exists_by_key(loom = loom, key = CA_DFLT_CLUSTERS_NAME))
              update_col_attr(
                loom = loom,
                key = CA_DFLT_CLUSTERS_NAME,
                value = as.character(x = annotation)
              )
            else {
              add_col_attr(
                loom = loom,
                key = CA_DFLT_CLUSTERS_NAME,
                value = as.character(x = annotation)
              )
            }      
          } else {
            # As we overwrite ClusterID and annotation is null, if ClusterName is already present, to be consistent we should delete it.
            if(col_attrs_exists_by_key(loom = loom, key = CA_DFLT_CLUSTERS_NAME)) {
              remove_col_attr(
                loom = loom,
                key = CA_DFLT_CLUSTERS_NAME
              )
            }
          }
        } else {
          warning("A default clustering has already been set. It won't be overwritten.")
        }
      }
    } else {
      add_col_attr(
        loom = loom,
        key = CA_DFLT_CLUSTERS_ID,
        value = clusters_as_numeric_ids
      )
      add_col_attr(
        loom = loom,
        key = CA_DFLT_CLUSTERS_NAME, value = as.character(x = annotation)
      )
    }
  }
  # Adding the clustering data
  if(col_attrs_exists_by_key(loom = loom, key = CA_CLUSTERINGS_NAME)) {
    print(paste0("col_attr '", CA_CLUSTERINGS_NAME, "' already exists..."))
    ca_clusterings <- get_clusterings(loom = loom)
    # Set the clustering id
    id <- ncol(x = ca_clusterings) # n clusterings (start at 0)
    clustering <- data.frame(
      "x" = clusters_as_numeric_ids,
      stringsAsFactors = F
    )
    append_clustering_update_ca(
      loom = loom,
      clustering.id = id,
      clustering = clustering
    )
  } else {
    print(paste(CA_CLUSTERINGS_NAME, "created..."))
    clustering <- data.frame(
      "x" = clusters_as_numeric_ids,
      stringsAsFactors = F
    )
    colnames(x = clustering) <- as.character(x = id)
    add_col_attr(
      loom = loom,
      key = CA_CLUSTERINGS_NAME,
      value = as.data.frame(x = clustering)
    )
  }
  flush(loom = loom)
  
  # Adding the clustering meta data
  add_global_md_clustering(
    loom = loom,
    id = id,
    group = group,
    name = name,
    clusters = clusters_as_factor_ids,
    annotation = annotation
  )
  flush(loom = loom)
  return(id)
}

#*******************#
# SCENIC functions ---- 
#*******************#

#'@title add_regulons
#'@description Add the regulons with their target genes generated by SCENIC as a row attribute to the given .loom file handler.
#'@param loom                           The loom file handler.
#'@param regulons                       A list of list of the regulons and their target genes generated by SCENIC.
#'#'@param column.attr.name Type of regulon to retrieve; Usually 'MotifRegulons' for motif-based regulons, or 'TrackRegulons' for track-based (e.g. ChIP-seq) regulons. 
#' (Might change according to the SCENIC/pySCENIC pipeline version and settings used).
#'@param regulon.threshold.assignments  The automated regulon cell assignments object generated by SCENIC.
#'@param regulon.enrichment.table       The regulon enrichment table generated by SCENIC.
#'@export
add_regulons <- function(
  loom,
  regulons,
  column.attr.name="MotifRegulons",
  regulon.threshold.assignments = NULL,
  regulon.enrichment.table = NULL
) {
  
  if(loom$mode=="r") stop("File open as read-only.")
  
  if(!is.null(x = regulon.threshold.assignments)) {
    cell_ids <- get_cell_ids(loom = loom)
    cells_not_found <- lapply(
      X = seq_along(along.with = regulon.threshold.assignments), 
      FUN = function(i) {
        tf <- names(regulon.threshold.assignments)[i]
        x <- regulon.threshold.assignments[[i]]
        # Get all cells from regulon cell assignments not found in dgem
        cells_not_found <- x$assignment[!(x$assignment%in%cell_ids)]
        if(length(x = cells_not_found) > 0) {
          return (
            list(
              name=tf,
              cells_not_found=cells_not_found
            )
          )
        }
      }
    )
    # Remove all empty entries
    cells_not_found <- Filter(
      f = Negate(
        f = is.null
      ), 
      x = cells_not_found
    )
    if(length(x = cells_not_found) > 0) {
      msg <- sapply(
        X = cells_not_found,
        FUN = function(x) {
          return (paste0("Cells not found in expression matrix for ", x$name ," regulon: ", paste0(x$cells_not_found, collapse = ", ")))
        }
      )
      cat(paste(msg, collapse="\n\n"))
    }
  }
  
  # Get cells IDs from expression matrix
  genes <- get_genes(loom = loom)
  
  # Add regulons
  regulons_mask <- do.call(
    what = "cbind",
    args = lapply(
      X = seq_along(along.with = regulons),
      FUN = function(regulon.idx) {
        reg.name <- names(x = regulons)[regulon.idx]
        reg.genes <- regulons[[regulon.idx]]
        reg.mask <- data.frame("x"=genes%in%reg.genes, stringsAsFactors = F)
        colnames(x = reg.mask) <- reg.name
        return (reg.mask)
      }
    )
  )
  row.names(x = regulons_mask) <- genes
  colnames(x = regulons_mask) <- gsub(
    pattern = " ",
    replacement = "_",
    x = colnames(x = regulons_mask)
  )
  add_row_attr(
    loom = loom,
    key = column.attr.name,
    value = as.data.frame(x = regulons_mask)
  )
  flush(loom = loom)
  
  # Add regulon thresholds
  if(!is.null(x = regulon.threshold.assignments)) {
    add_global_md_regulon_thresholds(
      loom = loom,
      regulon.threshold.assignments = regulon.threshold.assignments,
      regulon.enrichment.table = regulon.enrichment.table
    )
  }
  flush(loom = loom)
}
#'@export
add_scenic_regulons <- add_regulons

#'@title add_regulons_AUC
#'@description Add the regulons AUC matrix generated by SCENIC as a column attribute to the given .loom file handler.
#'@param loom         The loom file handler.
#'@param regulons.AUC A matrix of the regulons AUC values with M regulons as rows and N cells as columns.
#' @param column.attr.name Type of regulon to retrieve; Usually 'MotifRegulonsAUC' for motif-based regulons, or 'TrackRegulonsAUC' for track-based (e.g. ChIP-seq) regulons. 
#' (Might change according to the SCENIC/pySCENIC pipeline version and settings used).
#'@export 
add_regulons_AUC <- function(
  loom,
  regulons.AUC,
  column.attr.name="MotifRegulonsAUC"
) {
  if(loom$mode=="r") stop("File open as read-only.")
  
  # Check if some cells are missing betweem cells in embedding and the cells in the expression matrix
  check_missing_cells <- check_missings(
    x = get_cell_ids(loom = loom),
    y = colnames(x = regulons.AUC)
  )
  if(!check_missing_cells$result) {
    if(length(x = check_missing_cells$x.missing.in.y) > 0) {
      stop(paste0("Some cells (",length(x = check_missing_cells$x.missing.in.y),") from expression matrix are missing in the regulon AUC matrix: ", paste0(check_missing_cells$x.missing.in.y, collapse = ","), "."))
    }
    if(length(x = check_missing_cells$y.missing.in.x) > 0) {
      stop(paste0("Some cells (",length(x = check_missing_cells$y.missing.in.x),") from regulon AUC matrix are missing in the expression matrix: ", paste0(check_missing_cells$y.missing.in.x, collapse = ","), "."))
    }
  }
  
  # Check if cells in embedding are in the same order as in the expression matrix
  if(!is_order_conserved(x = get_cell_ids(loom = loom), y = colnames(x = regulons.AUC))) {
    stop("Please, make sure that row.names of the given embedding are in the same order as the column names of the expression matrix in the given loom.")
  }
  add_col_attr(
    loom = loom,
    key = column.attr.name,
    value = as.data.frame(x = t(x = regulons.AUC))
  )
  flush(loom = loom)
}
#'@export 
add_scenic_regulons_auc_matrix <- add_regulons_AUC

#*******************#
# Row data functions      ---- 
#*******************#

#'@title add_clustering_markers
#'@description Add the clustering markers as a row attribute to the given .loom file handler.
#'@param loom                       The loom file handler.
#'@param dgem                       A matrix of the gene expression with M genes as rows and N cells as columns.
#'@param clustering.id              The clustering id that the given clustering.markers are specific for.
#'@param clustering.markers         A list of markers of each cluster found for the given clustering.id.
#'@param marker.metric.accessors    A list of the column names of the metrics to extract from the cluster marker data.frame in the given clustering.markers.
#'@param marker.metric.names        A list of names to attribute to the given marker.metric.accessor.
#'@param marker.metric.descriptions A list of description to attribute to the given marker.metric.accessor.
#'@export
add_clustering_markers <- function(
  loom,
  clustering.id,
  clustering.markers,
  marker.metric.accessors = NULL,
  marker.metric.names = NULL,
  marker.metric.descriptions = NULL
) {
  if(loom$mode=="r") stop("File open as read-only.")
  
  # Check if a gene column is present
  tmp <- colnames(x = clustering.markers[[1]])
  if(!("gene" %in% tmp)) {
    stop("Cannot find a 'gene' column. Please use 'gene' as column name")
  }
  # Add the clustering markers as a mask
  genes <- get_genes(loom = loom, is.flybase.gn = F)
  clustering_markers_mask <- do.call(
    what = "cbind",
    args = lapply(
      X = seq_along(along.with = clustering.markers),
      FUN = function(cluster.idx) {
        cluster_name <- names(x = clustering.markers)[cluster.idx]
        cluster_markers <- clustering.markers[[cluster.idx]][["gene"]]
        cm_mask <- data.frame("x" = genes %in% cluster_markers, stringsAsFactors = F)
        colnames(x = cm_mask) <- cluster_name
        return (cm_mask)
      }
    )
  )
  row.names(x = clustering_markers_mask) <- genes
  print(paste0("Adding markers for clustering ", clustering.id, "..."))
  add_row_attr(
    loom = loom,
    key = paste0(RA_CLUSTERING_MARKERS_NAME, "_",clustering.id),
    value = as.data.frame(x = clustering_markers_mask)
  )
  flush(loom = loom)
  
  # Add the marker metrics
  # Check all marker metric vectors have the same length
  if(!is.null(x = marker.metric.accessors) && !is.null(x = marker.metric.names) && !is.null(x = marker.metric.descriptions)) {
    if(!all(lapply(X = list(marker.metric.accessors,marker.metric.names,marker.metric.descriptions), FUN = length) == length(marker.metric.accessors))) {
      stop("The given marker.metric.accessors, marker.metric.names and marker.metric.descriptions should have the same length.")
    }
    print(paste0("Adding metrics for clustering ", clustering.id, "..."))
    metrics_av <- list()
    for(metric.idx in seq_along(along.with = marker.metric.names)) {
      metric_accessor <- marker.metric.accessors[metric.idx]
      metric_name <- marker.metric.names[metric.idx]
      metric_description <- marker.metric.descriptions[metric.idx]
      clustering_marker_metric <- do.call(
        what = "cbind",
        args = lapply(
          X = seq_along(along.with = clustering.markers),
          FUN = function(cluster.idx) {
            cluster_name <- names(clustering.markers)[cluster.idx]
            # Get the current metric_name in the cluster marker table of the current cluster_name
            if(!("gene" %in% colnames(x = clustering.markers[[cluster.idx]]))) {
              stop(paste0("'gene' column does not exist in the given clustering table(s)."))
            }
            if(!(metric_accessor %in% colnames(x = clustering.markers[[cluster.idx]]))) {
              stop(paste0("'", metric_accessor, "' column does not exist in the given clustering table(s)."))
            }
            cluster_markers <- clustering.markers[[cluster.idx]][, c("gene", metric_accessor)]
            genes_df <- data.frame("gene" = genes, stringsAsFactors = F)
            metric_df <- merge(
              x = genes_df,
              y = cluster_markers,
              by = "gene",
              all = T
            )
            metric_df[is.na(x = metric_df)] <- 0
            row.names(x = metric_df) <- metric_df$gene
            # Order by order of genes stored in .loom
            metric_df <- metric_df[match(x = genes, table = metric_df$gene),]
            metric_df[, "gene"] <- NULL
            colnames(x = metric_df) <- cluster_name
            return (metric_df)
          }
        )
      )
      add_row_attr(
        loom = loom,
        key = paste0(RA_CLUSTERING_MARKERS_NAME, "_",clustering.id,"_",metric_accessor),
        value = as.data.frame(x = clustering_marker_metric)
      )
      flush(loom = loom)
      metrics_av[[length(metrics_av)+1]] <- list(
        "accessor"=metric_accessor,
        "name"=metric_name,
        "description"=metric_description
      )
    }
    add_global_md_clustering_kv(
      loom = loom,
      clustering.id = clustering.id,
      key = GA_METADATA_CLUSTERINGS_CLUSTER_MARKER_METRICS_NAME,
      value = metrics_av
    )
  }
}

#'@title add_fbgn
#'@description Add the Flybase gene as a row attribute to the given .loom file handler.
#'@param loom                       The loom file handler.
#'@param dgem                       A matrix of the gene expression with M genes as rows and N cells as columns.
#'@param fbgn.gn.mapping.file.path  A N-by-2 data.frame containing the mapping between the Flybase gene and the gene symbol.
#'@export
add_fbgn <- function(
  loom,
  dgem,
  fbgn.gn.mapping.file.path
) {
  if(loom$mode=="r") stop("File open as read-only.")
  fbgn.gn.mapping <- utils::read.table(
    file = fbgn.gn.mapping.file.path,
    header = F,
    sep = "\t",
    quote = '',
    stringsAsFactors = F
  )
  colnames(x = fbgn.gn.mapping) <- c("FBgn", RA_GENE_NAME)
  tmp <- data.frame(row.names(x = dgem))
  colnames(x = tmp) <- RA_GENE_NAME
  genes <- merge(
    x = tmp,
    y = fbgn.gn.mapping,
    by = RA_GENE_NAME
  )
  add_row_attr(
    loom = loom,
    key = "FBgn",
    value = genes$FBgn
  )
}

#*******************#
# Col data functions      ----
#*******************#

#'@title add_annotation_by_cluster_annotation_mapping_df
#'@description Add annotation as column attribute using cluster annotation mapping data.frame
#'@param loom                                   The loom file handler.
#'@param key                                    The name of the annotation
#'@param clustering.name                        The name of the clustering.
#'@param annotation.df                          The data.frame containing the cluster annotatiion mapping
#'@param annotation.df.cluster.id.column.name   The column name of the given annotation.df containing the cluster ID values
#'@param annotation.df.annotation.column.name   The column name of the given annotation.df containing the annotation values.
#'@export
add_annotation_by_cluster_annotation_mapping_df <- function(
  loom,
  key,
  clustering.name,
  annotation.df = NULL,
  annotation.df.cluster.id.column.name = NULL,
  annotation.df.annotation.column.name = NULL
) {
  md <- get_global_meta_data(loom = loom)
  gmd_clusterings <- md[["clusterings"]]
  gmd_clustering <- rlist::list.filter(
    .data = gmd_clusterings,
    name == clustering.name
  )[[1]]
  ca_clusterings <- get_col_attr_by_key(
    loom = loom,
    key = "Clusterings"
  )
  cluster_annotation <- plyr::mapvalues(
    ca_clusterings[, as.character(x = gmd_clustering$id)],
    from = as.character(x = annotation[[annotation.df.cluster.id.column.name]]),
    to = annotation[[annotation.df.annotation.column.name]]
  )
  add_col_attr(
    loom = loom,
    key = key,
    value = cluster_annotation,
    as.annotation = TRUE
  )
}

#*******************#
# Generic functions ---- 
#*******************#

#'@title lookup_all_global_attr
#'@description List all global attributes of the given .loom file handler.
#'@param loom The loom file handler.
#'@export
lookup_all_global_attr <- function(
  loom
) {
  if(is_loom_spec_version_3_or_greater(loom = loom))
    return (loom[["attrs"]]$names)
  return (list.attributes(object = loom))
}


#'@title update_global_attr
#'@description Update the global attribute with the given key and the given value.
#'@param loom   The loom file handler.
#'@param key    The key of the global attribute to update.
#'@param value  The new value
update_global_attr <- function(
  loom,
  key,
  value
) {
  if(loom$mode=="r") stop("Cannot update the given global attribute: file open as read-only.")
  remove_global_attr(
    loom = loom,
    key = key
  )
  add_global_attr(
    loom = loom,
    key = key,
    value = value
  )
}


#'@title remove_global_attr
#'@description Remove the global attribute with the given key.
#'@param loom The loom file handler.
#'@param key  The key of the global attribute to remove.
remove_global_attr <- function(
  loom,
  key
) {
  if(loom$mode=="r") stop("Cannot renove the given global attribute: file open as read-only.")
  if(is_loom_spec_version_3_or_greater(loom = loom)) {
    loom$link_delete(name = paste0("attrs/",key))
  } else {
    loom$attr_delete(attr_name = key)
  }
  flush(loom = loom)
}


#'@title get_global_attr
#'@description Get the global attribute with the given key.
#'@param loom The loom file handler.
#'@param key  The key of the global attribute to get value from.
#'@export
get_global_attr <- function(
  loom,
  key
) {
  if(is_loom_spec_version_3_or_greater(loom = loom))
    return (loom[["attrs"]][[key]][])
  return (h5attr(x = loom, which = key))
}

#'@title add_global_attr
#'@description Add a new global attribute to the given .loom object accessible by the given key and containing the given value.
#'@param loom   The loom file handler.
#'@param key    The name of the new added attribute.
#'@param value  The value of the new added attribute.
#'@export
add_global_attr <- function(
  loom,
  key,
  value,
  dtype = NULL
) {
  if(loom$mode=="r") stop("File open as read-only.")
  if(is.null(dtype)) {
    dtype <- guess_dtype(x = value)
  }
  # Encode character vector to UTF-8
  dtype <- hdf5_utf8_encode(
    value = value,
    dtype = dtype
  )
  if(is_loom_spec_version_3_or_greater(loom = loom)) {
    loom$create_dataset(
      name = paste0("attrs/", key),
      robj = value,
      dtype = dtype,
      space = get_dspace(x = "scalar"),
      chunk_dims = NULL
    )
  } else {
    loom$create_attr(
      attr_name = key,
      robj = value,
      dtype = dtype,
      space = get_dspace(x = "scalar")
    ) 
  }
  flush(loom = loom)
}

#'@title get_row_attr_by_key
#'@description Get the row attribute with the given key.
#'@param loom The loom file handler.
#'@param key  The name of the row attribute.
#'@export
get_row_attr_by_key <- function(
  loom,
  key
) {
  ra <- loom[["row_attrs"]]
  if(key == "Gene") {
    genes <- ra[[key]][]
    if(any(as.numeric(x = names(x = table(table(genes))))>1)) {
      stop("Some gene names are duplicated")
    }
  }
  return (ra[[key]][])
}

#'@title remove_row_attr
#'@description  Remove the row attribute with the given key.
#'@param key    The name of the row attribute.
#'@export
remove_row_attr <- function(
  loom,
  key
) {
  if(loom$mode=="r") stop("File open as read-only.")
  loom$link_delete(name = paste0("row_attrs/", key))
  flush(loom = loom)
}

#'@title update_row_attr
#'@description  Update the row attribute with the given key and the given value.
#'@param key    The name of the row attribute to remove.
#'@param value  The new value to update.
update_row_attr <- function(
  loom,
  key,
  value
) {
  if(loom$mode=="r") stop("File open as read-only.")
  loom$link_delete(name = paste0("row_attrs/",key))
  add_col_attr(
    loom = loom,
    key = key,
    value = value
  )
}

#'@title add_row_attr
#'@description Add a new row attribute to the given .loom object accessible by the given key and containing the given value.
#'@param loom   The loom file handler.
#'@param key    The name of the new added attribute.
#'@param value  The value of the new added attribute.
#'@export
add_row_attr <- function(
  loom,
  key,
  value,
  dtype = NULL
) {
  if(loom$mode=="r") stop("File open as read-only.")
  if(is.null(x = dtype)) {
    dtype <- guess_dtype(x = value)
  }
  # Encode character vector to UTF-8
  dtype <- hdf5_utf8_encode(
    value = value,
    dtype = dtype
  )
  loom$create_dataset(
    name = paste0("row_attrs/",key),
    robj = value,
    dtype = dtype
  )
  flush(loom = loom)
}

#'@title col_attrs_exists_by_key
#'@description Check if the column attribute with the given key exists.
#'@param loom The loom file handler.
#'@param key  The name of the new added attribute.
col_attrs_exists_by_key <- function(
  loom,
  key
) {
  ca <- loom[["col_attrs"]]
  return (key %in% names(ca))
}

#'@title get_col_attr_by_key
#'@description Get the column attribute with the given key.
#'@param loom The loom file handler.
#'@param key  The name of the column attribute.
#'@export
get_col_attr_by_key <- function(
  loom,
  key
) {
  ca <- loom[["col_attrs"]]
  return (ca[[key]][])
}

#'@title remove_col_attr
#'@description Remove the column attribute with the given key.
#'@param loom The loom file handler.
#'@param key  The name of column attribute to remove.
#'@export
remove_col_attr <- function(
  loom,
  key
) {
  if(loom$mode=="r") stop("File open as read-only.")
  loom$link_delete(name = paste0("col_attrs/", key))
  flush(loom = loom)
}

#'@title update_col_attr
#'@description Update the column attribute with the given key and with the given value.
#'@param loom   The loom file handler.
#'@param key    The name of column attribute to update.
#'@param value  The new value to update.
update_col_attr <- function(
  loom,
  key,
  value
) {
  if(loom$mode=="r") stop("File open as read-only.")
  loom$link_delete(name = paste0("col_attrs/",key))
  add_col_attr(
    loom = loom,
    key = key,
    value = value
  )
}

#'@title add_col_attr
#'@description Add a new column attribute to the given .loom object accessible by the given key and containing the given value.
#'@param loom          The loom file handler.
#'@param key           The name of the new added attribute.
#'@param value         The value of the new added attribute.
#'@param as.annotation Define this attribute as a discrete attribute. This attribute will be visible in the compare tab.
#'@param as.metric     Define this attribute as a continues
#'@export
add_col_attr <- function(
  loom,
  key,
  value,
  dtype = NULL,
  as.annotation = F,
  as.metric = F
) {
  if(loom$mode=="r") stop("File open as read-only.")
  if(as.annotation && as.metric) {
    stop("Cannot add column attribute that is both of type metric and annotation.")
  }
  
  if(as.annotation && length(unique(value)) > 245) {
    stop("Cannot add column attribute as an annotation with more than 245 unique values.")
  }
  
  if(is.null(x = dtype)) {
    dtype <- guess_dtype(x = value)
  }
  # Encode character vector to UTF-8
  dtype <- hdf5_utf8_encode(
    value = value,
    dtype = dtype
  )
  if(as.annotation) {
    value <- as.character(x = value)
    add_global_md_annotation(
      loom = loom,
      name = key,
      values = as.character(x = value)
    )
    flush(loom = loom)
  }
  if(as.metric) {
    value <- as.numeric(x = value)
    add_global_md_metric(loom = loom, name = key)
    flush(loom = loom)
  }
  loom$create_dataset(
    name = paste0("col_attrs/",key),
    robj = value,
    dtype = dtype
  )
  flush(loom = loom)
}

#'@title add_matrix
#'@description Add the given gene expression matrix dgem to the given .loom object.
#'@param loom The loom file handler.
#'@param dgem A matrix of the gene expression with M genes as rows and N cells as columns.
add_matrix <- function(
  loom,
  dgem,
  chunk.size,
  display.progress
) {
  if(loom$mode=="r") stop("File open as read-only.")
  
  # Check if any NA values
  if(any(is.na(x = dgem))) {
    stop("Please make sure that the expression matrix (dgem) does not contain any NA values.")
  }
  
  dtype <- get_dtype(x = dgem[1, 1])
  # Remove row names and column names
  row.names(x = dgem) <- NULL
  colnames(x = dgem) <- NULL
  
  loom$create_dataset(
    name = 'matrix',
    dtype = dtype,
    dims = rev(x = dim(x = dgem))
  )
  chunk_points <- chunk_points(
    data.size = dim(x = dgem)[2],
    chunk.size = chunk.size
  )
  if (display.progress) {
    pb <- utils::txtProgressBar(char = '=', style = 3)
  }

  for (col in 1:ncol(x = chunk_points)) {
    row_start <- chunk_points[1, col]
    row_end <- chunk_points[2, col]
    loom[['matrix']][row_start:row_end, ] <- t(x = as.matrix(x = dgem[, row_start:row_end]))
    if(display.progress) {
      utils::setTxtProgressBar(pb = pb, value = col / ncol(x = chunk_points))
    }
  }
  flush(loom = loom)
}

#'@title flush
#'@description flush
#'@param loom The loom file handler.
#'@export
flush <- function(
  loom
) {
  if(loom$mode=="r") stop("File open as read-only.")
  gc()
  loom$flush()
}

#'@title finalize
#'@description Save and close the given .loom file handler.
#'@param loom The loom file handler.
#'@export
finalize <- function(
  loom
) {
  if(loom$mode=="r") {
    warning("File open as read-only. Only closing file (not flushed)...")
    flush(loom = loom)
  }
  loom$close_all()
}

#'@title close_loom
#'@description Close the given .loom file handler. Equivalent to finalize but without flushing.
#'@param loom The loom file handler.
#'@export
close_loom <- function(
  loom
) {
  tryCatch({
    loom$close_all()
  }, error=function(e) {
    invisible(e)
  })
}

#'@title build_loom
#'
#'@description Write the data given as arguments to the given file.name .loom file.
#'@param file.name                  A string naming the .loom file to be generated.
#'@param title                      A short description of content of loom.
#'@param genome                     The genome used for the mapping.
#'@param dgem                       A matrix of the gene expression with M genes as rows and N cells as columns.
#'@param default.embedding          A M-by-2 data.frame of the embedding (X and Y coordinates) of the cells.
#'@param default.embedding.name     A description name for the given default.embedding
#'@param hierarchy                  A named list of the 3 hierarchy levels that can be used to group looms in SCope. Use create_hierarchy().
#'@param fbgn.gn.mapping.file.path  A N-by-2 data.frame containing the mapping between the Flybase gene and the gene symbol.
#'@param chunk.size                 The size of chunk of the gene expression matrix.
#'@param display.progress           Display progress when adding the gene expression matrix.
#'@export
build_loom <- function(
  file.name,
  dgem,
  title = NULL,
  genome = NULL,
  default.embedding = NULL,
  default.embedding.name = NULL,
  hierarchy = NULL,
  fbgn.gn.mapping.file.path = NULL,
  chunk.size = 1000,
  display.progress = T,
  loom.spec.version = 3
) {
  is_dgem_sparse <- F
  loom <- H5File$new(
    filename = file.name,
    mode = "w"
  )
  tryCatch({
    # global attrs
    print("Adding global attributes...")
    if(loom.spec.version > 2) {
      loom$create_group("attrs")
    }
    # Add LOOM_SPEC_VERSION
    add_global_loom_spec_version(
      loom = loom,
      loom.spec.version = loom.spec.version
    )

    # title
    if(!is.null(x = title)) {
      add_global_attr(
        loom = loom,
        key = GA_TITLE_NAME,
        value = as.character(x = title)
      )
    }
    # Genome
    if(!is.null(x = genome)) {
      add_global_attr(
        loom = loom,
        key = GA_TITLE_GENOME,
        value = as.character(x = genome)
      )
    }
    # Creation data
    add_global_attr(
      loom = loom,
      key = GA_CREATION_DATE_NAME,
      value = as.character(x = Sys.time())
    )
    # R version
    add_global_attr(
      loom = loom,
      key = GA_R_VERSION_NAME,
      value = as.character(x = R.version.string)
    )
    cn <- colnames(x = dgem)
    rn <- row.names(x = dgem)
    # global MetaData attribute
    init_global_meta_data(
      loom = loom,
      loom.spec.version = loom.spec.version
    )
    # Add hierarchy levels
    if(!is.null(x = hierarchy)) {
      add_hierarchy(
        loom = loom,
        hierarchy = hierarchy
      )
    }
    # matrix
    # Check the type of the sparse matrix
    # convert to dgCMatrix if necessary to speedup populating the matrix slot
    if("dgTMatrix" %in% class(x = dgem)) {
      print("Converting to dgCMatrix...")
      dgem <- methods::as(
        object = dgem,
        Class = "dgCMatrix"
      )
    }
    # Check if sparse matrix
    if(sum(class(x = dgem) %in% c("dgCMatrix","dgTMatrix")) > 0) {
      is_dgem_sparse <- T
    }
    print("Adding matrix...")
    add_matrix(
      loom = loom,
      dgem = dgem,
      chunk.size = chunk.size,
      display.progress = display.progress
    )
    # col_attrs
    print("Adding column attributes...")
    loom$create_group("col_attrs")
    add_col_attr(
      loom = loom,
      key = CA_CELLID,
      value = as.character(x = cn)
    )
    # Check if matrix is raw counts
    if(sum(dgem%%1!=0) == 0) {
      print("Adding default metrics nUMI...")
      if(is_dgem_sparse) {
        nUMI <- Matrix::colSums(x = dgem)
      } else {
        nUMI <- colSums(x = dgem)
      }
      add_col_attr(
        loom = loom,
        key = "nUMI",
        value = nUMI,
        as.metric = T
      )
    } else {
      warning("Default metric nUMI was not added because the input matrix does not seem to be the raw counts.")
    }
    print("Adding default metrics nGene...")
    if(is_dgem_sparse) {
      nGene <- Matrix::colSums(x = dgem > 0)
    } else {
      nGene <- colSums(x = dgem > 0)
    }
    add_col_attr(
      loom = loom,
      key = "nGene",
      value = nGene,
      as.metric = T
    )
    if(!is.null(x = default.embedding)) {
      print("Adding default embedding...")
      # Add the default embedding
      if(is.null(x = default.embedding.name)) {
        default.embedding.name <- "Embedding"
      }
      add_embedding(
        loom = loom,
        embedding = as.data.frame(x = default.embedding),
        name = default.embedding.name,
        is.default = T
      )
    } else {
      warning("No default embedding set for the loom. You'll not be able to visualize it in SCope.")
    }
    # row_attrs
    print("Adding row attributes...")
    loom$create_group("row_attrs")
    add_row_attr(
      loom = loom,
      key = RA_GENE_NAME,
      value = as.character(x = rn)
    )
    # Check if Flybase gene mapping is not empty
    if(!is.null(x = fbgn.gn.mapping.file.path)) {
      add_fbgn(
        loom = loom,
        dgem = dgem,
        fbgn.gn.mapping.file.path = fbgn.gn.mapping.file.path
      )
    }
    # col_graphs
    print("Adding columns graphs...")
    col.graphs <- loom$create_group("col_graphs")
    # row_edges
    print("Adding row graphs...")
    row.graphs <- loom$create_group("row_graphs")
    # layers
    print("Adding layers...")
    layers <- loom$create_group("layers")
  }, error = function(e) {
    flush(loom = loom)
    loom$close()
    stop(e)

  }, finally = {
    flush(loom = loom)
  })
  flush(loom = loom)
}


#'@title lookup_loom
#'@description List the content of the given .loom file handler.
#'@param loom The loom file handler.
#'@export
lookup_loom <- function(
  loom
) {
  loom$ls(recursive=TRUE)
}

#'@title open_loom
#'@description Open loom file and return a .loom file handler.
#'@param  file.path The file path to the .loom file.
#'@param mode "r" for read-only (default). "r+" for read/write
#'@return A loom file handler
#'@export
open_loom <- function(
  file.path,
  mode="r"
) {
  if(mode != "r" && mode != 'r+') {
    stop("'r' (read) and 'r+' (read/write) modes are only allowed.")
  }
  loom <- tryCatch(
    {
      H5File$new(
        filename = file.path,
        mode = mode
      )
    },
    error = function(e) {
      msg <-  paste0("It is not possible to open the file. ")
      if(tolower(mode)=="w") msg <-  paste0(msg, "Do you have permissions to open it in WRITE mode? (mode='w')")
      
      msg <-  paste0(msg, "\n", e$message)
      e$message <- msg
      stop(e)
    }
  )
  if(is_loom_spec_version_3_or_greater(loom = loom)) {
    # warning("Loom specification version 3 or greater detected!")
  } else {
    warning("Loom specification version 2 or smaller detected!")
  }
  return (loom)
}

#'@title convert_to_loom_v3_spec
#'@description Convert a .loom file to version 3 specification of the Loom format
#'@param loom The loom file handler.
#'@return A loom file handler
#'@export
convert_to_loom_v3_spec <- function(
  loom
) {
  if(is_loom_spec_version_3_or_greater(loom = loom)) {
    stop("The given loom is already in Loom version 3 specification.")
  }
  gmd <- get_global_meta_data(loom = loom)
  # Update loom spec version to 3
  print("Updating to Loom v3 specification...")
  if(loom$attr_exists(attr_name = GA_LOOM_SPEC_VERSION)) {
    remove_global_attr(loom = loom, GA_LOOM_SPEC_VERSION) 
  }
  # Create the global attrs group
  loom$create_group("attrs")
  add_global_loom_spec_version(
    loom = loom,
    loom.spec.version = 3
  )
  for(global_attr_key in list.attributes(object = loom)) {
    print(paste0("Converting ", global_attr_key, " global attribute to Loom v3 specification..."))
    if(global_attr_key == "MetaData") {
      value <- rjson::toJSON(x = gmd)
    } else {
      value <- h5attr(
        x = loom,
        which = global_attr_key
      )
    }
    loom$attr_delete(attr_name = global_attr_key)
    add_global_attr(
      loom = loom,
      key = global_attr_key,
      value = value
    )
  }
  flush(loom = loom)
  return (loom)
  print("Done")
}



#*******************#
# Utils                      ---- 
#*******************#

#'@title check_missings
#'@description Check if some elements are missing between given vectors x an y
#'@param x A vector of elements
#'@param y Another vector of elements
#'@return A list with "result", a logical whether the two vectors are conserved
#'                    "x.missing.in.y", a vector of elements in x that are missing in y
#'                    "y.missing.in.x", a vector of elements in y that are missing in x
check_missings <- function(
  x,
  y,
  check.both = TRUE
) {
  x_diff_y <- setdiff(x = x, y = y)
  if(check.both) {
    y_diff_x <- setdiff(x = y, y = x)
  } else {
    y_diff_x <- NULL
  }
  return (
    list(
      "result"=length(x = x_diff_y)==0 && length(x = y_diff_x)==0,
      "x_missing_in_y"=x_diff_y,
      "y_missing_in_x"=y_diff_x)
    )
}

#'@title is_order_conserved
#'@description Check if order between elements of the given vectors x an y are the same
#'@param x A vector of elements
#'@param y Another vector of elements
is_order_conserved <- function(x,y) {
  return (
    isTRUE(
      x = all.equal(
        current = x,
        target = y
      )
    )
  )
}

#'@title compress_gzb64
#'@description Open loom file and return a .loom file handler.
#'@param file.path The file path to the .loom file.
compress_gzb64 <- function(c) {
  return (
    base64enc::base64encode(
      what = memCompress(
        from = c,
        type = "gzip"
      )
    )
  )
}

#'@title decompress_gzb64
#'@description Open loom file and return a .loom file handler.
#'@param file.path The file path to the .loom file.
decompress_gzb64 <- function(gzb64c) {
  return (
    rawToChar(
      x = memDecompress(
        from = base64enc::base64decode(what = gzb64c),
        type = "gzip",
        asChar = F
      ),
      multiple = F
    )
  )
}

#'@title hdf5_utf8_encode
#'@description Open loom file and return a .loom file handler.
#'@param value The value from which the dtype should be UTF8 encoded.
#'@param dtype The dtype of the given value.
hdf5_utf8_encode <- function(
  value,
  dtype
) {
  if(class(x = dtype)[1] == "H5T_STRING") {
    # Set to UTF-8 encoding otherwise read as byte array
    dtype <- dtype$set_cset('UTF-8')
  } else if(class(dtype)[1] == "H5T_COMPOUND") {
    dtypes <- unique(x = sapply(X = value, FUN = class))
    if(length(x = dtypes) > 1) {
      stop("Adding a data.frame as column requires the values to be the same type.")
    }
    if(dtypes == "character") {
      # Set all the columns to UTF-8 encoding otherwise read as byte array
      dtype <- H5T_COMPOUND$new(
        labels = colnames(x = value),
        dtypes = lapply(
          X = seq_along(along.with = colnames(x = value)),
          FUN = function(x) { 
            return (
              H5T_STRING$new(size = Inf)$set_cset(cset = "UTF-8")) 
            }
          )
        )
    }
  }
  return (dtype)
}

#*******************#
# Utils              ---- 
#*******************#

#' @title chunk_points
#' @description  Generate chunk points.
#' @author mojaveazure
#' @param data.size How big is the data being chunked.
#' @param chunk.size How big should each chunk be.
#' @return A matrix where each column is a chunk, row 1 is start points, row 2 is end points.
#' @export
chunk_points <- function(
  data.size,
  chunk.size
) {
  return(vapply(
    X = 1L:ceiling(x = data.size / chunk.size),
    FUN = function(i) {
      return(c(
        start = (chunk.size * (i - 1L)) + 1L,
        end = min(chunk.size * i, data.size)
      ))
    },
    FUN.VALUE = numeric(length = 2L)
  ))
}


#'@title get_dtype
#'@description Get HDF5 data types.
#'@author mojaveazure
#'@param x An R object or string describing HDF5 datatype.
#'@return The corresponding HDF5 data type.
#'@import hdf5r
#'@seealso \link{hdf5r::h5types}
#'@export
get_dtype <- function(x) {
  return(switch(
    EXPR = class(x = x),
    'numeric' = h5types$double,
    'integer' = h5types$int,
    'character' = H5T_STRING$new(size = Inf),
    'logical' = H5T_LOGICAL$new(),
    stop(paste("Unknown data type:", class(x = x)))
  ))
}

#'@title get_dspace
#'@description Get the HDF5 dataspace interface object given x.
#'@param x The dataspace interface name. Either scalar or simple.
#'@return The corresponding HDF5 dataspace interface object.
get_dspace <- function(x) {
  dspaces <- c("scalar", "simple")
  if(!(x %in% dspaces)) {
    stop(paste("Wrong dspace. Choose either scalar or simple."))
  }
  return (
    H5S$new(
      type = x,
      dims = NULL,
      maxdims = NULL
    )
  )
}

#'@title is_base64_encoded
#'@description Checks whether the given value is base64 encoded.
#'@param value The value to check.
#'@return T is base64 encoded otherwise F.
is_base64_encoded <- function(value) {
  return (
    grepl(
      pattern = BASE64_PATTERN,
      x = value,
      perl=TRUE
    )
  )
}

#'@title is_gzipped
#'@description Checks whether the given value is gzip compressed.
#'@param value The value to check.
#'@return T if gzip compressed otherwise F.
is_gzipped <- function(value) {
  tryCatch({
    memDecompress(
      from = value,
      type = "gzip",
      asChar = F
    )
    return (T)
  }, error = function(e) {
    return (F)
  }, finally = {
  })
}

#'@title is_json
#'@description Checks whether the given value is a json character
#'@param value The value to check.
#'@return T if json string character otherwise F.
is_json <- function(value) {
  tryCatch({
    rjson::fromJSON(json_str = value)
    return (T)
  }, error = function(e) {
    return (F)
  }, finally = {
  })
}

#*******************#
#*******************#
#  DATA EXTRACTION  ----
#*******************#
#*******************#

#'@title get_cell_ids
#'@description Get the cell names
#'@param loom           The loom file handler.
#'@export
get_cell_ids <- function(
  loom,
  is.flybase.gn = F
) {
  ra <- loom[["col_attrs"]]
  return(ra[[CA_CELLID]][])
}

#'@title get_genes
#'@description Get the gene names either symbols or Flybase gene identifiers.
#'@param loom           The loom file handler.
#'@param is.flybase.gn  Whether to retrieve the Flybase gene identifiers or not.
#'@export
get_genes <- function(
  loom,
  is.flybase.gn = F
) {
  ra <- loom[["row_attrs"]]
  if(is.flybase.gn) {
    return (ra[["FBgn"]])
  }
  return (ra[[RA_GENE_NAME]][])
}

#**********#
#  Matrix  ----
#**********#
  
#'@title get_dgem
#'@description Get the expression matrix for the given .loom.
#'@param loom The loom file handler.
#'@return The gene expression matrix (genes as rows, cells as columns).
#'@export
get_dgem <- function(
  loom
) {
  dgem <- t(x = loom[["matrix"]][,])
  cell_ids <- get_cell_ids(loom = loom)
  # Set the Cell IDs
  colnames(x = dgem) <- cell_ids
  genes <- get_genes(loom = loom)
  row.names(x = dgem) <- genes
  return (dgem)
}

#*******************#
#  Embeddings    ----
#*******************#

#'@title get_embedding_by_name
#'@description Get the embedding with the given embedding.name in the given .loom.
#'@param loom           The loom file handler.
#'@param embedding.name The name of the given embedding to retrieve
#'@return The embedding with the given embedding.name.
#'@export
get_embedding_by_name  <-  function(
  loom,
  embedding.name
) {
  return (get_embeddings(loom = loom)[[embedding.name]])
}

#'@title get_default_embedding
#'@description Get the default embedding for the given .loom.
#'@param loom The loom file handler.
#'@return The default embedding.
#'@export
get_default_embedding <- function(
  loom
) {
  return (loom[["col_attrs"]][[CA_EMBEDDING_NAME]][])
}

#' @title get_embeddings
#' @description Get embeddings (e.g. t-SNE, UMAP) from the given loom file
#' @param loom The loom file handler.
#' @return List with the embeddings (each of them as data.frame)
#' @examples
#' loomPath <-  file.path(system.file('extdata', package='SCopeLoomR'), "example.loom")
#' loom <- open_loom(loomPath)
#' 
#' embeddings <- get_embeddings(loom)
#' names(embeddings)
#' head(embeddings[[1]])
#' @export
get_embeddings <- function(
  loom
){
  embeddings <- list()
  for(embedding in get_global_meta_data(loom = loom)$embeddings)
  {
    if(embedding$id == -1){
      tmp <- as.matrix(x = get_default_embedding(loom = loom)[])
      rownames(x = tmp) <- get_cell_ids(loom = loom)
      embeddings[[embedding$name]] <- tmp
    } else {
      tmp <- cbind(
        loom[["col_attrs"]][["Embeddings_X"]][][,as.character(embedding$id)],
        loom[["col_attrs"]][["Embeddings_Y"]][][,as.character(embedding$id)]
      )
      rownames(x = tmp) <- get_cell_ids(loom = loom)
      embeddings[[embedding$name]] <- tmp
    }
  }
  return(embeddings)
}

#*******************#
#  Clusterings   ----
#*******************#

#'@title get_clustering_annotations
#'@description Get crowd annotations from each clustering of the clustering with the given clustering.name
#'@param loom The loom file handler.
#'@param clustering.name The name of the clustering.
#'@param curator_orcid (Optional) If provided, only annotations with this ORCID will be selected.
#'@param out_file_path (Optional) If provided, the output results will be saved to this file path.
#'@return A cell-based data.frame containing information about the annotations associated to each cluster of the clustering.
get_clustering_annotations <- function(
  loom,
  clustering_name = "Annotation",
  curator_orcid = NULL,
  curation_timestamp = NULL,
  skip_without_timestamp = FALSE,
  out_file_path = NULL
) {
  
  md <- get_global_meta_data(loom = loom)
  md_clusterings <- md$clusterings
  
  md_clustering <- rlist::list.filter(.data = md_clusterings, name == clustering_name)
  if(length(x = md_clustering) != 1) {
    stop(paste0("Clustering ", clustering_name,"does not exist. list_clusterings_names() function can be used to list the existing clusterings."))
  }
  md_clustering <- md_clustering[[1]]
  
  # Get the cell-cluster association for the given clustering
  clusterings <- get_clusterings_with_name(loom = loom)
  clustering <- clusterings[[as.character(x = md_clustering$id)]]
  
  clustering_annotations <- NULL
  
  is_extracting <- FALSE
  
  for(cluster in md_clustering$clusters) {
    if(length(x = cluster$cell_type_annotation) == 0) {
      next
    }
    if(length(x = cluster$cell_type_annotation) > 1) {
      stop(paste0("Extracting annotations with cluster having multiple annotations has not been implemented. Cluster ", cluster$id," (", cluster$description,") has multiple annotations."))
    }
    cta <- cluster$cell_type_annotation[[1]]
    
    if(is.null(x = cta$data$annotation_label)) {
      warning(paste0("Skipping cluster with ID ", cluster$id," and description '", cluster$description,"'. No annotation detected."))
      next
    }
    curators <- rlist::list.apply(.data = cta$votes$votes_for$voters, function(x) { x$voter_id })[[1]]
    
    # If ORCID provided, only annotations with the given ORCID will be selected
    if(!is.null(x = curator_orcid) && !(curator_orcid %in% curators)) {
      next
    }
    
    # If curation timestamp provided, only annotations after the given timestamp will be selected
    if(!is.numeric(x = curation_timestamp)) {
      stop("Expects curation_timestamp to be an integer and in milleseconds.")
    }
    
    if(cta$data$timestamp < 0 && skip_without_timestamp) {
      next
    }
    
    if(!is.null(x = curator_orcid) && cta$data$timestamp > 0 && cta$data$timestamp < curation_timestamp) {
      print(cta$data$timestamp)
      next
    }
    
    is_extracting <- TRUE
    
    # Make annotation data.frame for the current "cluster"
    cell_ids <- get_cell_ids(loom = loom)[clustering == cluster$description]
    annotations_df <- data.frame("CellID"=cell_ids)
    annotations_df$AnnotationLabel <- cta$data$annotation_label
    annotations_df$AnnotationFBbt <- cta$data$obo_id
    annotations_df$CuratorMarkers <- paste(cta$data$markers, collapse = ", ")
    annotations_df$Publication <- cta$data$publication
    annotations_df$Curators <- paste0(curators, collapse = ", ")
    annotations_df$Comment <- cta$data$comment
    annotations_df$ClusteringID <- md_clustering$id
    annotations_df$ClusteringName <- md_clustering$name
    annotations_df$ClusterID <- cluster$id
    
    # Concatenate the results
    if(is.null(x = clustering_annotations)) {
      clustering_annotations <- annotations_df
    } else {
      clustering_annotations <- rbind(clustering_annotations, annotations_df)
    }
  }
  
  if(is_extracting) {
    print(paste0("Extracting annotations from clustering '", clustering_name, "'"))
  }
  
  if(!is.null(x = out_file_path)) {
    print(paste0("Writing output to CSV file: ", out_file_path))
    write.csv(x = clustering_annotations, file = out_file_path, row.names = FALSE)
  }
  
  return(clustering_annotations)
  
}

#'@title get_all_clustering_annotations
#'@description Get crowd annotations from each clustering of the clustering with the given clustering.name
#'@param loom The loom file handler.
#'@param clustering.name The name of the clustering.
#'@param curator_orcid Only annotations with this ORCID will be selected.
#'@param from_date Only annotations that were added after this data (YYYY-mm-dd) will be selected. By default, it will use the current date.
#'@param skip_without_timestamp Don't keep annotations with negative timestamp (these are usually final/custom generated annotations).
#'@return A cell-based data.frame containing information about the annotations associated to each cluster of all the clusterings.
get_all_clustering_annotations <- function(
  loom, 
  curator_orcid = NULL, 
  from_date = format(Sys.time(), "%Y-%m-%d"),
  skip_without_timestamp = TRUE
) {
  if(is.null(x = curator_orcid)) {
    stop("The curator_orcid parameter is required.")
  }
  d <- try(as.Date(x = from_date, format="%Y-%m-%d"))
  if("try-error" %in% class(x = d) || is.na(x = d)) {
    print("The given data is not valid. Use YYYY-mm-dd format.")
  }
  date <- as.POSIXct(paste0(from_date, "00:00:00"))
  # Convert date to milliseconds
  curation_timestamp <- as.integer(x = date)*1000
  all_clustering_annotations <- NULL
  
  for(clustering_name in list_clusterings_names(loom = loom)) {
    annotations_df <- get_clustering_annotations(
      loom = loom,
      clustering_name = clustering_name,
      curator_orcid = curator_orcid,
      curation_timestamp = curation_timestamp,
      skip_without_timestamp = skip_without_timestamp
    )
    # Concatenate the results
    if(is.null(x = all_clustering_annotations)) {
      all_clustering_annotations <- annotations_df
    } else {
      all_clustering_annotations <- rbind(
        all_clustering_annotations,
        annotations_df
      )
    }
  }
  return (all_clustering_annotations)
}


#'@title get_clustering_idx_by_cluster_name
#'@description Get index of the clutering related to the given cluster.name.
#'@param loom The loom file handler.
#'@param cluster.name The name of the cluster.
#'@return The index of the clustering in the clusterings metadata global attribute corresponding to the clustering where the given cluster.name is found.
get_clustering_idx_by_cluster_name <- function(
  loom,
  cluster.name
) {
  library(rlist)
  # Get global meta data
  md <- get_global_meta_data(loom = loom)
  # Unlist the nested meta data tree
  tmp <- list.flatten(x = md$clusterings)
  # Look for the given cluster.name
  idx = match(
    x = cluster.name,
    table = tmp
  )
  if(is.na(x = idx)) {
    return (idx)
  }
  # Reverse search from idx till the first key id is found
  for(i in idx:1) {
    if(names(x = tmp)[i] == "id") id <- tmp[[i]]; break
  }
  return (
    list.findi(
      .data = md$clusterings,
      id == id
    )
  )
}

#'@title get_cluster_info_by_cluster_name
#'@description Get cluster information (Clustering ID, Clustering Name, Clustering Group, Cluster ID, Cluster Name) of the given cluster.name.
#'@param loom The loom file handler.
#'@param cluster.name The name of the cluster.
#'@return The index of the clustering in the clusterings metadata global attribute corresponding to the clustering where the given cluster.name is found.
#'@export
get_cluster_info_by_cluster_name <- function(
  loom,
  cluster.name
) {
  library(rlist)
  # Get global meta data
  md <- get_global_meta_data(loom = loom)
  # Get the index of the clustering in the meta data clusterings
  clustering.idx <- get_clustering_idx_by_cluster_name(
    loom = loom,
    cluster.name = cluster.name
  )
  if(is.na(x = clustering.idx)) {
    stop(paste0("The given cluster ", cluster.name, " does not exist in this .loom."))
  }
  clustering.id <- md$clusterings[[clustering.idx]]$id
  cluster.idx <- list.findi(
    .data = md$clusterings[[clustering.idx]]$clusters,
    cond = description == cluster.name
  )
  return (
    list(
      clustering.id=clustering.id,
      clustering.name=md$clusterings[[clustering.idx]]$name,
      clustering.group=md$clusterings[[clustering.idx]]$group,
      cluster.id=md$clusterings[[clustering.idx]]$clusters[[cluster.idx]]$id,
      cluster.name=md$clusterings[[clustering.idx]]$clusters[[cluster.idx]]$description
    )
  )
}

#'@title get_clusterings
#'@description Get clustering of the given loom.
#'@param loom The loom file handler.
#'@param cluster.name The name of the cluster.
#'@return A N-by-M data.frame containing the clusterings of the given loom. N represents the cells and M the clusterings.
#'@export
get_clusterings <- function(
  loom
) {
  clusterings <- get_col_attr_by_key(
    loom = loom,
    key = CA_CLUSTERINGS_NAME
  )
  row.names(x = clusterings) <- get_cell_ids(loom = loom)
  return (clusterings)
}

#'@title get_global_md_clustering_by_id
#'@description Get clustering with the given clustering.id of the given loom.
#'@param loom The loom file handler.
#'@param clustering.id The ID of the clustering.
#'@return A N-by-1 vector containing the cell assignments to each of the clusters of the clustering.
#'@export
get_clustering_by_id <- function(
  loom,
  clustering.id
) {
  ca.clusterings <- get_clusterings(loom = loom)
  return (ca.clusterings[, colnames(x = ca.clusterings) %in% clustering.id])
}

#' @title get_clusterings_with_name
#' @description Get cell clusterings stored in the given loom file 
#' @param loom .loom file name
#' @return data.frame containing the clusterings in the given loom (cells as rows, clustering alternatives as columns).
#' @examples
#' # clusters <- get_clusterings_with_name(loom)
#' # head(clusters)
#' @export
get_clusterings_with_name <- function(
  loom
){
  md_clusterings <- get_global_meta_data(loom = loom)$clusterings
  clustering_ids <- sapply(X = md_clusterings, FUN = function(x) { return (x$id)})
  clusterings <- get_clusterings(loom = loom)
  # Filter out clusterings not present in global metadata attribute
  clusterings <- clusterings[, as.character(x = clustering_ids), drop = FALSE]

  for(clustering_id in clustering_ids){
    md_clustering <- rlist::list.filter(.data = md_clusterings, id == clustering_id)[[1]]
    cluster_levels <- sapply(
      X = md_clustering$clusters,
      FUN = function(cluster) {
        return (
          setNames(
            object = cluster$description,
            nm = cluster$id
          )
        )
      }
    )
    clusterings[, as.character(x = clustering_id)] <- factor(
      x = clusterings[, as.character(x = clustering_id)],
      levels = names(x = cluster_levels),
      labels = cluster_levels
    )
  }
  return (clusterings)
}

#'@title get_cell_mask_by_cluster_name
#'@description Get a cell mask for the given cluster.name of the given loom.
#'@param loom The loom file handler.
#'@param cluster.name The name of the cluster.
#'@return A N-by-1 boolean vector specifying which cells belong to the given cluster.name in the given loom.
get_cell_mask_by_cluster_name <- function(
  loom,
  cluster.name
) {
  # Get the cluster info given the cluster.name
  cluster_info <- get_cluster_info_by_cluster_name(
    loom = loom,
    cluster.name = cluster.name
  )
  # Get the clustering related to the given cluster.name
  ca_clustering <- get_global_md_clustering_by_id(
    loom = loom,
    clustering.id = cluster_info$clustering.id
  )
  # Create the mask
  return (ca_clustering %in% cluster_info$cluster.id)
}

#'@title get_cluster_markers
#'@description Get a list of data.frame each containing the statistical markers for the clusters from the clustering with the given clustering.name and filtered with the given log.fc.threshold and given adj.p.value.
#'@param loom                   The loom file handler.
#'@param clustering.name        The name/description of the clustering.
#'@param log.fc.threshold       The log fold change threshold
#'@param adj.p.value.threshold  The adjusted p-value threshold
#'@return A list of L data.frame of N-by-M containing the statistical markers for all the clusters of from the clusteirng with the given clustering.name. L represents the number of clusters. N represents the number of statistical markers for a given cluster.
#'@export
get_cluster_markers <- function(
  loom,
  clustering.id = NULL,
  clustering.name = NULL,
  log.fc.threshold = 1.5,
  adj.p.value.threshold = 0.05,
  n.signif.digits = NULL
) {
  clustering <- NULL
  if(!is.null(x = clustering.name)) {
    # Get clustering ID
    clustering <- get_global_md_clustering_by_name(
      loom = loom,
      clustering.name = clustering.name
    )
  } else {
    if(is.null(x = clustering.id)) {
      stop("The clustering.id or clustering.name argument is required.")
    }
    clustering <- get_global_md_clustering_by_id(
      loom = loom,
      clustering.id = clustering.id
    )
  }
  genes <- get_row_attr_by_key(loom = loom, key = "Gene")
  clustering_marker_mask <- get_row_attr_by_key(
    loom = loom,
    key = paste0("ClusterMarkers_", clustering$id) 
  )
  rownames(x = clustering_marker_mask) <- genes
  colnames(x = clustering_marker_mask) <- rep('is_marker', ncol(x = clustering_marker_mask))

  clustering_avg_log_fc <- get_row_attr_by_key(
    loom = loom,
    key = paste0(RA_CLUSTERING_MARKERS_NAME, "_", clustering$id, '_avg_logFC')
  )
  rownames(x = clustering_avg_log_fc) <- genes
  colnames(x = clustering_avg_log_fc) <- rep('avg_logFC', ncol(x = clustering_avg_log_fc))

  clustering_pval <- get_row_attr_by_key(
    loom = loom,
    key = paste0(RA_CLUSTERING_MARKERS_NAME, "_", clustering$id, '_pval')
  )
  rownames(x = clustering_pval) <- genes
  colnames(x = clustering_pval) <- rep('adj_pval', ncol(x = clustering_pval))
  
  # Get cluster names
  cluster_names <- get_cluster_names(clustering = clustering)
  # Create list
  marker_list <- lapply(
    X = 1:ncol(x = clustering_avg_log_fc),
    FUN = function (i) {
      cbind(
        clustering_marker_mask[,i, drop=FALSE],
        clustering_avg_log_fc[,i, drop=FALSE],
        clustering_pval[,i, drop=FALSE]
      )
    }
  )
  # Rounding
  if(!is.null(x = n.signif.digits)) {
    marker_list <- lapply(
      X = marker_list, 
      FUN = function(x) {
        return (
          signif(
            x = x,
            digits = n.signif.digits
          )
        )
      }
    )
  }
  # Filter
  marker_list <- lapply(
    X = marker_list, 
    FUN = function(x) x <- x[which(x[,1] == TRUE),]
  )
  marker_list <- lapply(
    X = marker_list, 
    FUN = function(x) x <- x[which(x[,2] > log.fc.threshold),]
  )
  marker_list <- lapply(
    X = marker_list, 
    FUN = function(x) x <- x[which(x[,3] < adj.p.value.threshold),]
  )
  marker_list <- lapply(
    X = marker_list, 
    FUN = function(x) x <- x[with(x, order(-x[,'avg_logFC'], x[,'adj_pval'])),]
  )
  names(x = marker_list) <- cluster_names
  return(marker_list)
}

#'@title get_all_cluster_markers
#'@description Get cluster markers from all clusterings fromthe given loom file with filter applied by the given log.fc.threshold and adj.p.value.threshold.
#'@param loom                   The loom file handler.
#'@param log.fc.threshold       The log fold change threshold
#'@param adj.p.value.threshold  The adjusted p-value threshold
#'@param n.signif.digits        Number of significant digits in the output.
#'@return A list of data.frames containing all the clusterings with their cluster markers (adj. p-value and log fold changes). The list names refer to the different clustering names.
#'@export
get_all_cluster_markers <- function(
  loom,
  log.fc.threshold = 1.5,
  adj.p.value = 0.05,
  n.signif.digits = NULL
) {
  all_markers <- list()
  clustering_ids <- sapply(
    X = get_global_md_clusterings(loom = loom),
    FUN = function(clustering) return (clustering$id)
  )
  
  for(clustering_id in clustering_ids) {
    clustering_name <- get_global_md_clustering_by_id(
      loom = loom,
      clustering.id = clustering_id
    )$name
    
    clustering_markers <- get_cluster_markers(
      loom = loom,
      clustering.id = clustering_id,
      log.fc.threshold = log.fc.threshold,
      adj.p.value = adj.p.value,
      n.signif.digits = n.signif.digits
    )
    all_markers[[clustering_name]] <- clustering_markers
  }
  return (all_markers)
}

#'@title list_clusterings_names
#'@description Get a list of all clustering names in the given loom
#'@param loom             The loom file handler.
#'@return A list of all clustering names
#'@export
list_clusterings_names <- function(
  loom
) {
  md_clusterings <- get_global_md_clusterings(loom = loom)
  return (sapply(
    X = 1:length(x = md_clusterings),
    FUN = function (i) md_clusterings[[i]]$name)
  )
}

#'@title get_cluster_dgem_by_name
#'@description Get a subset of the digital gene expression matrix containing only the cells in the cluster annotated by the given cluster.name.
#'@param loom The loom file handler.
#'@param cluster.name The name/description of the cluster.
#'@return A N-by-M matrix containing the gene expression levels of the cells in the cluster annotated by the given cluster.name. N represents the genes and M the cells.
#'@export
get_cluster_dgem_by_name <- function(
  loom,
  cluster.name
) {
  # Get the cell mask for the given cluster.name
  mask <- get_cell_mask_by_cluster_name(
    loom = loom,
    cluster.name = cluster.name
  )
  dgem <- get_dgem(loom = loom)
  return (dgem[, mask])
}

#*******************#
#  Annotations      ----
#*******************#

#' @title get_cell_annotation
#' @description Get cell annotations from the given loom file
#' @param loom .loom file name
#' @return data.frame containing the cell annotations in the given loom (cells as rows, annotation variables as columns).
#' @examples
#' loomPath <-  file.path(system.file('extdata', package='SCopeLoomR'), "example.loom")
#' loom <- open_loom(loomPath)
#' 
#' cell_annotations <- get_cell_annotation(loom)
#' head(cellAnnots)
#' @export
get_cell_annotation <- function(
  loom,
  annotations.columns = NULL
) {
  exclude_columns <- c("CellID", "ClusterID", "Clusterings", "Embedding", "Embeddings_X", "Embeddings_Y", "RegulonsAUC")
  if(is.null(x = annotations.columns)) {
    annotations.columns <- names(x = loom[["col_attrs"]])[which(x = !names(x = loom[["col_attrs"]]) %in% exclude_columns)]
  }
  cell_annotations <- list()
  for (annoation_column in annotations.columns){
    cell_annotations[[annoation_column]] <- get_col_attr_by_key(
      loom = loom,
      key = annoation_column
    )
  }
  cell_annotations <- data.frame(cell_annotations)
  rownames(x = cell_annotations) <- get_cell_ids(loom = loom)
  return (cell_annotations)
}

#*******************#
#  Regulons         ----
#*******************#

#' @title get_regulons_AUC
#' @description Get AUCell matrix from the given loom file
#' @param loom .loom file name
#' @param column.attr.name Type of regulon to retrieve; Usually 'MotifRegulonsAUC' for motif-based regulons, or 'TrackRegulonsAUC' for track-based (e.g. ChIP-seq) regulons. 
#' (Might change according to the SCENIC/pySCENIC pipeline version and settings used).
#' @param rows Type of data stored as rows (only for informative purposes) Default: "regulons"
#' @param columns Type of data stored as columns (only for informative purposes) Default: "cells"
#' @return AUC matrix in the slot \code{loom[["col_attrs"]][["RegulonsAUC"]][]}. 
#' If AUCell is installed, it will be stored as aucellResults object.
#' @examples
#' loom_file_pathath <-  file.path(system.file('extdata', package='SCopeLoomR'), "example.loom")
#' loom <- open_loom(loomPath)
#' 
#' regulons_AUC <- get_regulons_AUC(loom)
#' @export
get_regulons_AUC <- function(
  loom,
  column.attr.name="MotifRegulonsAUC",
  rows="regulons",
  columns="cells"
) {
  if(!column.attr.name %in% names(loom[["col_attrs"]]))
  {
    msg <- paste("The attribute '", column.attr.name, "' is not available in this loom file.", sep='')
    possible_values <- grep("egulon", names(x = loom[["col_attrs"]]), value=T)
    if(length(x = possible_values)>0) {
      msg <- c(
        msg, 
        " Possible values include: ",
        paste(possible_values, collapse=", "),
        paste(". Try setting the 'column.attr.name' argument to one of these values (i.e., get_regulons_AUC(loom, column.attr.name='", possible_values[1], "')).",sep="")
      )
    }
    if(length(x = possible_values) == 0) {
      msg <- c(
        msg, 
        " The loom doesn't contain regulon information."
      )
    }
    stop(msg)
  }
  
  mtx <- loom[["col_attrs"]][[column.attr.name]][]
  rownames(x = mtx) <- get_cell_ids(loom = loom)
  mtx <- t(x = mtx)
  names(x = dimnames(x = mtx)) <- c(rows, columns)

  if("AUCell" %in% rownames(x = installed.packages())) {
    require(AUCell)
    mtx <- new(
      Class = "aucellResults",
      SummarizedExperiment::SummarizedExperiment(assays=list(AUC=mtx))
    )
  }
  return(mtx)
}

#' @title get_regulons
#' @description Get regulons from the given loom file
#' @param loom .loom file name
#' @param column.attr.name Type of regulon to retrieve; Usually 'MotifRegulons' for motif-based regulons, or 'TrackRegulons' for track-based (e.g. ChIP-seq) regulons. 
#' (Might change according to the SCENIC/pySCENIC pipeline version and settings used).
#' @param tfAsName Whether to return only the TF name (calls \code{SCENIC::getTF()}), or the regulon name as stored in the loom file.
#' @param tfSep Character used as separator for the TF name and extra values stored in the regulon name. To be passed to SCENIC::getTF()
#' @return The regulons as incidence matrix or list.
#' @examples
#' loomPath <-  file.path(system.file('extdata', package='SCopeLoomR'), "example.loom")
#' loom <- open_loom(loomPath)
#' 
#' regulons <- get_regulons(loom)
#' head(regulons)
#' @export
get_regulons <- function(
  loom,
  column.attr.name="MotifRegulons",
  tf.as.name=TRUE,
  tf.sep="_"
){
  if(!column.attr.name %in% names(loom[["row_attrs"]]))
  {
    msg <- paste("The attribute '", column.attr.name, "' is not available in this loom file.", sep='')
    possible_values <- grep("egulon", names(loom[["row_attrs"]]), value=T)
    if(length(x = possible_values) > 0) {
      msg <- c(
        msg,
        " Possible values include: ",
        paste(possible_values, collapse=", "),
        paste(". Try setting the 'column.attr.name' argument to one of these values (i.e., get_regulons(loom, column.attr.name='", possible_values[1], "')).", sep="")
      )
    }
    if(length(x = possible_values) == 0) {
      msg <- c(msg, " The loom doesn't contain regulon information.")
    }
    stop(msg)
  }
  
  incidence_matrix <- loom[["row_attrs"]][[column.attr.name]][] # incid mat
  rownames(x = incidence_matrix) <- get_genes(loom = loom)
  incidence_matrix <- t(x = incidence_matrix)
  
  if(tf.as.name) {
    rownames(x = incidence_matrix) <- SCENIC::getTF(
      regulonName = rownames(x = incidence_matrix),
      sep = tf.sep
    )
  }
  
  return(incidence_matrix)
}

#' @title get_regulon_thresholds
#' @description Get the AUC thresholds for the regulons in the given loom file
#' @param loom .loom file name
#' @param onlySelected Whether to return only the selected threshold for each regulon (as vector), 
#' or also the alternative thresholds calculated by AUCell (as list).
#' @examples
#' loomPath <-  file.path(system.file('extdata', package='SCopeLoomR'), "example.loom")
#' loom <- open_loom(loomPath)
#' 
#' thresholds <- get_regulon_thresholds(loom)
#' head(thresholds)
#' @export
get_regulon_thresholds <- function(
  loom,
  only.selected=TRUE
) {
  if(only.selected) {
    thresholds <- sapply(
      X = get_global_meta_data(loom = loom)$regulonThresholds,
      function(x) {
        setNames(
          object = x$regulon,
          nm = x$defaultThresholdValue
        )
      }
    )
  } else{
    thresholds <- sapply(
      X = get_global_meta_data(loom)$regulonThresholds,
      function(x) {
        list(
          aucThr=list(
            selected=x$defaultThresholdValue,
            thresholds=data.frame(x$allThresholds) # if pySCENIC: transpose?
          )
        )
      }
    )
  }
  
  return(thresholds)
}

#'@title get_cell_mask_by_cluster_name
#'@description Get a cell mask for the given cluster.name of the given loom.
#'@param loom The loom file handler.
#'@param cluster.name The name of the cluster.
#'@return A N-by-1 boolean vector specifying which cells belong to the given cluster.name in the given loom.
get_cell_mask_by_cluster_name <- function(
  loom,
  cluster.name
) {
  # Get the cluster info given the cluster.name
  cluster_info <- get_cluster_info_by_cluster_name(
    loom = loom,
    cluster.name = cluster.name
  )
  # Get the clustering related to the given cluster.name
  ca.clustering <- get_clustering_by_id(
    loom = loom,
    clustering.id = cluster_info$clustering.id
  )
  # Create the mask
  return (ca.clustering %in% cluster_info$cluster.id)
}

#'@title get_cluster_dgem_by_name
#'@description Get a subset of the digital gene expression matrix containing only the cells in the cluster annotated by the given cluster.name.
#'@param loom The loom file handler.
#'@param cluster.name The name/description of the cluster.
#'@return A N-by-M matrix containing the gene expression levels of the cells in the cluster annotated by the given cluster.name. N represents the genes and M the cells.
#'@export
get_cluster_dgem_by_name <- function(
  loom,
  cluster.name
) {
  # Get the cell mask for the given cluster.name
  mask <- get_cell_mask_by_cluster_name(
    loom = loom,
    cluster.name = cluster.name
  )
  dgem <- get_dgem(loom = loom)
  return (dgem[, mask])
}
aertslab/SCopeLoomR documentation built on April 19, 2022, 11:25 a.m.